About IFPRI

The International Food Policy Research Institute (IFPRI), established in 1975, provides research-based policy solutions to sustainably reduce poverty and end hunger and malnutrition. The Institute conducts research, communicates results, optimizes partnerships, and builds capacity to ensure sustainable food production, promote healthy food systems, improve markets and trade, transform agriculture, build resilience, and strengthen institutions and governance. Gender is considered in all of the Institute’s work. IFPRI collaborates with partners around the world, including development implementers, public institutions, the private sector, and farmers’ organizations. IFPRI is a member of the CGIAR Consortium.

About IFPRI’s Peer Review Process

IFPRI books are policy-relevant publications based on original and innovative research conducted at IFPRI. All manuscripts submitted for publication as IFPRI books undergo an extensive review procedure that is managed by IFPRI’s Publications Review Committee (PRC). Upon submission to the PRC, the manuscript is reviewed by a PRC member. Once the manuscript is considered ready for external review, the PRC submits it to at least two external reviewers who are chosen for their familiarity with the subject matter and the country setting. Upon receipt of these blind external peer reviews, the PRC provides the author with an editorial decision and, when necessary, instructions for revision based on the external reviews. The PRC reassesses the revised manuscript and makes a recommendation regarding publication to the director general of IFPRI. With the director general’s approval, the manuscript enters the editorial and production phase to become an IFPRI book.
Southern African Agriculture and Climate Change
A Comprehensive Analysis

Edited by Sepo Hachigonta, Gerald C. Nelson, Timothy S. Thomas, and Lindiwe Majele Sibanda

A peer-reviewed publication
International Food Policy Research Institute
Washington, DC
Southern African agriculture and climate change: a comprehensive analysis / edited by Sepo Hachigonta... [et al]. — 1st ed. p. cm. — (Climate change in Africa ; 3)
Includes bibliographical references and index.
ISBN 978-0-89629-208-6 (alk. paper)
S472.A356S68 2013 635.0968—dc23
635.0968—dc23 2013021765

Cover design: Carolyn Hallowell
Contents

- **Figures** vii
- **Tables** xix
- **Foreword** xxiii
- **Acknowledgments** xxv
- **Abbreviations and Acronyms** xxvii

Chapter 1 Overview
Sepo Hachigonta, Gerald C. Nelson, Timothy S. Thomas, and Lindiwe Majele Sibanda

Chapter 2 Methodology
Gerald C. Nelson, Amanda Palazzo, Daniel Mason-d’Croz, Richard Robertson, and Timothy S. Thomas

Chapter 3 Botswana
Peter P. Zhou, Tichakunda Simbini, Gorata Ramokgotlwane, Timothy S. Thomas, Sepo Hachigonta, and Lindiwe Majele Sibanda

Chapter 4 Lesotho
Patrick Gwimbi, Timothy S. Thomas, Sepo Hachigonta, and Lindiwe Majele Sibanda

Chapter 5 Malawi
John D. K. Saka, Pickford Sibale, Timothy S. Thomas, Sepo Hachigonta, and Lindiwe Majele Sibanda
<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Annual average precipitation in southern Africa, 1950–2000 (millimeters per year)</td>
<td>3</td>
</tr>
<tr>
<td>1.2</td>
<td>Land cover and land use in southern Africa, 2000</td>
<td>4</td>
</tr>
<tr>
<td>1.3</td>
<td>Yields for the main rainfed crops in southern Africa, 2000 (metric tons per hectare)</td>
<td>7</td>
</tr>
<tr>
<td>1.4</td>
<td>Travel time to cities of 500,000 or more people in southern Africa, circa 2000</td>
<td>10</td>
</tr>
<tr>
<td>1.5</td>
<td>Changes in mean annual precipitation in southern Africa, 2000–2050, A1B scenario (millimeters)</td>
<td>13</td>
</tr>
<tr>
<td>1.6</td>
<td>Change in monthly mean maximum temperature in southern Africa for the warmest month, 2000–2050, A1B scenario</td>
<td>14</td>
</tr>
<tr>
<td>2.1</td>
<td>The International Model for Policy Analysis of Agricultural Commodities and Trade (IMPACT) modeling framework</td>
<td>26</td>
</tr>
<tr>
<td>2.2</td>
<td>International Model for Policy Analysis of Agricultural Commodities and Trade (IMPACT) unit of analysis, the food production unit (FPU)</td>
<td>31</td>
</tr>
<tr>
<td>2.3</td>
<td>Sample box-and-whisker graph</td>
<td>38</td>
</tr>
<tr>
<td>3.1</td>
<td>Population trends in Botswana: Total population, rural population, and percent urban, 1960–2008</td>
<td>45</td>
</tr>
<tr>
<td>3.2</td>
<td>Poverty rates in Botswana by region and urban/rural, 2003</td>
<td>47</td>
</tr>
<tr>
<td>3.3</td>
<td>Land cover and land use in Botswana, 2000</td>
<td>49</td>
</tr>
<tr>
<td>3.4</td>
<td>Protected areas in Botswana, 2009</td>
<td>50</td>
</tr>
<tr>
<td>3.5</td>
<td>Travel time to urban areas of various sizes in Botswana, circa 2000</td>
<td>51</td>
</tr>
</tbody>
</table>
3.6 Population projections for Botswana, 2010–2050
3.7 Gross domestic product (GDP) per capita in Botswana, future scenarios, 2010–2050
3.8 Changes in mean annual precipitation in Botswana, 2000–2050, A1B scenario (millimeters)
3.9 Change in monthly mean maximum daily temperature in Botswana for the warmest month, 2000–2050, A1B scenario (°C)
3.10 Yield change under climate change: Rainfed maize in Botswana, 2000–2050, A1B scenario
3.11 Yield change under climate change: Rainfed sorghum in Botswana, 2000–2050, A1B scenario
3.12 Impact of changes in GDP and population on maize in Botswana, 2010–2050
3.13 Impact of changes in GDP and population on sorghum in Botswana, 2010–2050
3.14 Number of malnourished children under five years of age in Botswana in multiple income and climate scenarios, 2010–2050
3.15 Share of malnourished children under five years of age in Botswana in multiple income and climate scenarios, 2010–2050
3.16 Kilocalories per capita in Botswana in multiple income and climate scenarios, 2010–2050
4.2 Population distribution in Lesotho, 2000 (persons per square kilometer)
4.3 Per capita GDP in Lesotho (constant 2000 US$) and share of GDP from agriculture (percent), 1960–2008
4.4 Well-being indicators in Lesotho, 1960–2008
4.5 Land cover and land use in Lesotho, 2000
4.6 Protected areas in Lesotho, 2009
4.7 Travel time to urban areas of various sizes in Lesotho, circa 2000
4.8 Population projections for Lesotho, 2010–2050
4.9 Gross domestic product (GDP) per capita in Lesotho, future scenarios, 2010–2050
4.10 Changes in mean annual precipitation in Lesotho, 2000–2050, A1B scenario (millimeters)
4.11 Change in monthly mean maximum daily temperature in Lesotho for the warmest month, 2000–2050, A1B scenario (°C)
4.12 Yield change under climate change: Rainfed maize in Lesotho, 2000–2050, A1B scenario
4.13 Yield change under climate change: Rainfed sorghum in Lesotho, 2000–2050, A1B scenario
4.14 Yield change under climate change: Rainfed wheat in Lesotho, 2000–2050, A1B scenario
4.15 Number of malnourished children under five years of age in Lesotho in multiple income and climate scenarios, 2010–2050
4.16 Share of malnourished children under five years of age in Lesotho in multiple income and climate scenarios, 2010–2050
4.17 Kilocalories per capita in Lesotho in multiple income and climate scenarios, 2010–2050
4.18 Impact of changes in GDP and population on maize in Lesotho, 2010–2050
4.19 Impact of changes in GDP and population on sorghum in Lesotho, 2010–2050
4.20 Impact of changes in GDP and population on wheat in Lesotho, 2010–2050
5.1 Population trends in Malawi: Total population, rural population, and percent urban, 1960–2008
5.2 Population distribution in Malawi, 2000 (persons per square kilometer)
5.3 Per capita GDP in Malawi (constant 2000 US$) and share of GDP from agriculture (percent), 1960–2008
5.4 Well-being indicators in Malawi, 1960–2008
5.5 Poverty in Malawi, circa 2005 (percentage of population below US$2 per day)
5.6 Land cover and land use in Malawi, 2000
5.7 Protected areas in Malawi, 2009
5.8 Travel time to urban areas of various sizes in Malawi, circa 2000
<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.9</td>
<td>Yield (metric tons per hectare) and harvest area density (hectares) for rainfed maize in Malawi, 2000</td>
<td>125</td>
</tr>
<tr>
<td>5.10</td>
<td>Yield (metric tons per hectare) and harvest area density (hectares) for rainfed cassava in Malawi, 2000</td>
<td>126</td>
</tr>
<tr>
<td>5.11</td>
<td>Yield (metric tons per hectare) and harvest area density (hectares) for rainfed cotton in Malawi, 2000</td>
<td>126</td>
</tr>
<tr>
<td>5.12</td>
<td>Yield (metric tons per hectare) and harvest area density (hectares) for rainfed groundnuts in Malawi, 2000</td>
<td>127</td>
</tr>
<tr>
<td>5.13</td>
<td>Yield (metric tons per hectare) and harvest area density (hectares) for rainfed beans in Malawi, 2000</td>
<td>127</td>
</tr>
<tr>
<td>5.14</td>
<td>Population projections for Malawi, 2010–2050</td>
<td>128</td>
</tr>
<tr>
<td>5.15</td>
<td>Gross domestic product (GDP) per capita in Malawi, future scenarios, 2010–2050</td>
<td>129</td>
</tr>
<tr>
<td>5.16</td>
<td>Changes in mean annual precipitation in Malawi, 2000–2050, A1B scenario (millimeters)</td>
<td>130</td>
</tr>
<tr>
<td>5.17</td>
<td>Change in monthly mean maximum daily temperature in Malawi for the warmest month, 2000–2050, A1B scenario (°C)</td>
<td>132</td>
</tr>
<tr>
<td>5.18</td>
<td>Yield change under climate change: Rainfed maize in Malawi, 2000–2050, A1B scenario</td>
<td>133</td>
</tr>
<tr>
<td>5.19</td>
<td>Number of malnourished children under five years of age in Malawi in multiple income and climate scenarios, 2010–2050</td>
<td>134</td>
</tr>
<tr>
<td>5.20</td>
<td>Share of malnourished children under five years of age in Malawi in multiple income and climate scenarios, 2010–2050</td>
<td>135</td>
</tr>
<tr>
<td>5.21</td>
<td>Kilocalories per capita in Malawi in multiple income and climate scenarios, 2010–2050</td>
<td>135</td>
</tr>
<tr>
<td>5.22</td>
<td>Impact of changes in GDP and population on maize in Malawi, 2010–2050</td>
<td>137</td>
</tr>
<tr>
<td>5.23</td>
<td>Impact of changes in GDP and population on cassava in Malawi, 2010–2050</td>
<td>138</td>
</tr>
<tr>
<td>5.24</td>
<td>Impact of changes in GDP and population on cotton in Malawi, 2010–2050</td>
<td>139</td>
</tr>
<tr>
<td>6.1</td>
<td>Population trends in Mozambique: Total population, rural population, and percent urban, 1960–2008</td>
<td>149</td>
</tr>
<tr>
<td>6.2</td>
<td>Population distribution in Mozambique, 2000 (persons per square kilometer)</td>
<td>150</td>
</tr>
</tbody>
</table>
6.3 Per capita GDP in Mozambique (constant 2000 US$) and share of GDP from agriculture (percent), 1960–2008 151
6.4 Well-being indicators in Mozambique, 1960–2008 152
6.5 Poverty in Mozambique, circa 2005 (percentage of population below US$2 per day) 153
6.6 Land cover and land use in Mozambique, 2000 154
6.7 Protected areas in Mozambique, 2009 155
6.8 Travel time to urban areas of various sizes in Mozambique, circa 2000 156
6.9 Yield (metric tons per hectare) and harvest area density (hectares) for rainfed maize in Mozambique, 2000 159
6.10 Yield (metric tons per hectare) and harvest area density (hectares) for rainfed cassava in Mozambique, 2000 160
6.11 Population projections for Mozambique, 2010–2050 161
6.12 Gross domestic product (GDP) per capita in Mozambique, future scenarios, 2010–2050 161
6.13 Change in mean annual precipitation in Mozambique, 2000–2050, A1B scenario (millimeters) 163
6.14 Change in monthly mean maximum daily temperature in Mozambique for the warmest month, 2000–2050, A1B scenario (°C) 164
6.15 Yield change under climate change: Rainfed maize in Mozambique, 2000–2050, A1B scenario 165
6.16 Number of malnourished children under five years of age in Mozambique in multiple income and climate scenarios, 2010–2050 167
6.17 Share of malnourished children under five years of age in Mozambique in multiple income and climate scenarios, 2010–2050 167
6.18 Kilocalories per capita in Mozambique in multiple income and climate scenarios, 2010–2050 168
6.19 Impact of changes in GDP and population on rainfed maize in Mozambique, 2010–2050 169
6.20 Impact of changes in GDP and population on rainfed cassava in Mozambique, 2010–2050 170
7.1 Population trends in South Africa: Total population, rural population, and percent urban, 1960–2008 176
7.2 Population distribution in South Africa, 2000 (persons per square kilometer) 177
7.3 Per capita GDP in South Africa (constant 2000 US$) and share of GDP from agriculture (percent), 1960–2008 177
7.4 Well-being indicators in South Africa, 1960–2008: Life expectancy and under-five mortality rate 179
7.6 Poverty in South Africa, circa 2005 (percentage of population below US$2 per day) 180
7.7 Land cover and land use in South Africa, 2000 181
7.7 Protected areas in South Africa, 2009 182
7.9 Travel time to urban areas of various sizes in South Africa, circa 2000 183
7.12 Yield (metric tons per hectare) and harvest area density (hectares) for maize in South Africa, 2005 188
7.15 Yield (metric tons per hectare) and harvest area density (hectares) for wheat in South Africa, 2005 191
7.17 Yield (kilograms per hectare) and harvest area density (hectares) for sugarcane in South Africa, 2005 193
7.18 Population projections for South Africa, 2010–2050 195
<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.20</td>
<td>Change in monthly mean maximum daily temperature in South Africa for the warmest month, 2000–2050, A1B scenario (°C)</td>
<td>197</td>
</tr>
<tr>
<td>7.21</td>
<td>Yield change under climate change: Rainfed maize in South Africa, 2000–2050, A1B scenario</td>
<td>199</td>
</tr>
<tr>
<td>7.22</td>
<td>Yield change under climate change: Rainfed wheat in South Africa (excluding Western Cape), 2000–2050, A1B scenario</td>
<td>200</td>
</tr>
<tr>
<td>7.23</td>
<td>Impact of changes in GDP and population on maize in South Africa, 2010–2050</td>
<td>202</td>
</tr>
<tr>
<td>7.24</td>
<td>Impact of changes in GDP and population on wheat in South Africa, 2010–2050</td>
<td>203</td>
</tr>
<tr>
<td>7.26</td>
<td>Impact of changes in GDP and population on sugarcane in South Africa, 2010–2050</td>
<td>205</td>
</tr>
<tr>
<td>7.27</td>
<td>Number of malnourished children under five years of age in South Africa in multiple income and climate scenarios, 2010–2050</td>
<td>206</td>
</tr>
<tr>
<td>7.28</td>
<td>Share of malnourished children under five years of age in South Africa in multiple income and climate scenarios, 2010–2050</td>
<td>206</td>
</tr>
<tr>
<td>7.29</td>
<td>Kilocalories per capita in South Africa in multiple income and climate scenarios, 2010–2050</td>
<td>207</td>
</tr>
<tr>
<td>8.1</td>
<td>Population trends in Swaziland: Total population, rural population, and percent urban, 1960–2008</td>
<td>214</td>
</tr>
<tr>
<td>8.2</td>
<td>Population distribution in Swaziland, 2000 (persons per square kilometer)</td>
<td>215</td>
</tr>
<tr>
<td>8.3</td>
<td>Per capita GDP in Swaziland (constant 2000 US$) and share of GDP from agriculture (percent), 1960–2008</td>
<td>217</td>
</tr>
<tr>
<td>8.5</td>
<td>Well-being indicators in Swaziland, 1960–2008</td>
<td>219</td>
</tr>
<tr>
<td>8.6</td>
<td>Land cover and land use in Swaziland, 2000</td>
<td>221</td>
</tr>
<tr>
<td>8.7</td>
<td>Travel time to urban areas of various sizes in Swaziland, circa 2000</td>
<td>224</td>
</tr>
<tr>
<td>8.8</td>
<td>Yield (metric tons per hectare) and harvest area density (hectares) for rainfed maize in Swaziland, 2000</td>
<td>227</td>
</tr>
</tbody>
</table>
8.9 Yield (metric tons per hectare) and harvest area density (hectares) for irrigated sugarcane in Swaziland, 2000

8.10 Population projections for Swaziland, 2010–2050

8.11 Gross domestic product (GDP) per capita in Swaziland, future scenarios, 2010–2050

8.12 Change in mean annual precipitation in Swaziland, 2000–2050, A1B scenario (millimeters)

8.13 Change in monthly mean maximum daily temperature in Swaziland for the warmest month, 2000–2050, A1B scenario (°C)

8.14 Yield change under climate change: Rainfed maize in Swaziland, 2000–2050, A1B scenario

8.15 Impact of changes in GDP and population on maize in Swaziland, 2010–2050

8.16 Impact of changes in GDP and population on sugarcane in Swaziland, 2010–2050

8.17 Impact of changes in GDP and population on cotton in Swaziland, 2010–2050

8.18 Number of malnourished children under five years of age in Swaziland in multiple income and climate scenarios, 2010–2050

8.19 Share of malnourished children under five years of age in Swaziland in multiple income and climate scenarios, 2010–2050

8.20 Kilocalories per capita in Swaziland in multiple income and climate scenarios, 2010–2050

9.2 Population distribution in Zambia, 2000 (persons per square kilometer)

9.3 Per capita GDP in Zambia (constant 2000 US$) and share of GDP from agriculture (percent), 1960–2008

9.5 Poverty in Zambia, circa 2005 (percentage of population below US$2 per day)

9.6 Land cover and land use in Zambia, 2000

9.7 Protected areas in Zambia, 2009
9.8 Travel time to urban areas of various sizes in Zambia, circa 2000 265
9.9 Yield (metric tons per hectare) and harvest area density (hectares) for rainfed maize in Zambia, 2000 268
9.10 Yield (metric tons per hectare) and harvest area density (hectares) for rainfed cassava in Zambia, 2000 269
9.11 Yield (metric tons per hectare) and harvest area density (hectares) for rainfed cotton in Zambia, 2000 269
9.12 Yield (metric tons per hectare) and harvest area density (hectares) for rainfed groundnuts in Zambia, 2000 270
9.15 Changes in mean annual precipitation in Zambia, 2000–2050, A1B scenario (millimeters) 273
9.16 Changes in monthly mean maximum daily temperature in Zambia for the warmest month, 2000–2050, A1B scenario (°C) 274
9.17 Yield change under climate change: Rainfed maize in Zambia, 2000–2050, A1B scenario 276
9.18 Number of malnourished children under five years of age in Zambia in multiple income and climate scenarios, 2010–2050 277
9.19 Share of malnourished children under five years of age in Zambia in multiple income and climate scenarios, 2010–2050 277
9.20 Kilocalories per capita in Zambia in multiple income and climate scenarios, 2010–2050 278
9.21 Impact of changes in GDP and population on maize in Zambia, 2010–2050 279
9.22 Impact of changes in GDP and population on cassava in Zambia, 2010–2050 280
9.23 Impact of changes in GDP and population on cotton in Zambia, 2010–2050 281
10.2 Population distribution in Zimbabwe, 2000 (persons per square kilometer) 291
10.3 Per capita GDP in Zimbabwe (constant 2000 US$) and share of GDP from agriculture, 1960–2008 (percent)
10.4 Well-being indicators in Zimbabwe, 1960–2008
10.5 Land cover and land use in Zimbabwe, 2000
10.6 Protected areas in Zimbabwe, 2009
10.7 Travel time to urban areas of various sizes in Zimbabwe, circa 2000
10.8 Yield (metric tons per hectare) and harvest area density (hectares) for rainfed maize in Zimbabwe, 2000
10.9 Yield (metric tons per hectare) and harvest area density (hectares) for rainfed cotton in Zimbabwe, 2000
10.10 Yield (metric tons per hectare) and harvest area density (hectares) for rainfed sorghum in Zimbabwe, 2000
10.11 Yield (metric tons per hectare) and harvest area density (hectares) for rainfed millet in Zimbabwe, 2000
10.12 Yield (metric tons per hectare) and harvest area density (hectares) for rainfed groundnuts in Zimbabwe, 2000
10.13 Population projections for Zimbabwe, 2010–2050
10.14 Gross domestic product (GDP) per capita in Zimbabwe, future scenarios, 2010–2050
10.15 Changes in mean annual precipitation in Zimbabwe, 2000–2050, A1B scenario (millimeters)
10.16 Changes in monthly mean maximum daily temperature in Zimbabwe for the warmest month, 2000–2050, A1B scenario (°C)
10.17 Yield change under climate change: Rainfed maize in Zimbabwe, 2000–2050, A1B scenario
10.18 Yield change under climate change: Rainfed sorghum in Zimbabwe, 2000–2050, A1B scenario
10.19 Impact of changes in GDP and population on maize in Zimbabwe, 2010–2050
10.20 Impact of changes in GDP and population on cotton in Zimbabwe, 2010–2050
10.21 Impact of changes in GDP and population on sorghum in Zimbabwe, 2010–2050
10.22 Impact of changes in GDP and population on millet in Zimbabwe, 2010–2050 313
10.23 Number of malnourished children under five years of age in Zimbabwe in multiple income and climate scenarios, 2010–2050 314
10.24 Share of malnourished children under five years of age in Zimbabwe in multiple income and climate scenarios, 2010–2050 314
10.25 Kilocalories per capita in Zimbabwe in multiple income and climate scenarios, 2010–2050 315
Tables

1.1 Average harvest area of leading agricultural commodities in southern Africa, 2006–2008 (hectares) 5
1.2 Population of southern Africa, annualized growth rate, and urban growth rate, 1988 and 2008 8
1.3 Income of southern Africans (GDP per capita and share of GDP from agriculture), 1988 and 2008 9
1.4 Under-five mortality and life expectancy at birth in southern Africa, 1988 and 2008 10
1.5 Projected population in southern Africa, 2010–2050 (millions) 11
1.6 GDP per capita scenarios for southern Africa, 2010–2050 (constant 2000 US$) 12
1.7 Maize projections for southern Africa showing yield, area, and production, 2010–2050 16
1.8 Millet projections for southern Africa showing yield, area, and production, 2010–2050 17
1.9 Sorghum projections for southern Africa showing yield, area, and production, 2010–2050 18
2.1 GCM and SRES scenario global average changes, 2000–2050 28
2.2 Gross domestic product (GDP) and population choices for the three overall scenarios 33
2.3 Global average scenario per capita gross domestic product growth rate, 1990–2000 and 2010–2050 (percent per year) 33
2.4 Summary statistics for population and per capita gross domestic project, 2010 and 2050 34
2.5 Noncaloric determinants of global child malnutrition, 2010 and 2050
2.6 Mean price elasticities used for southern African countries in IMPACT, 2010 and 2050
3.1 Population growth rates in Botswana, 1960–2008 (percent)
3.3 Agricultural and national gross domestic product (GDP) for Botswana, 2000–2007
3.5 Beef exports from Botswana to the EU, 2001–2007 (metric tons)
4.1 Population growth rates in Lesotho, 1960–2008 (percent)
4.2 Education and labor statistics for Lesotho, 1980s, 1990s, and 2000s
4.3 Harvest area of leading agricultural commodities in Lesotho, 2006–2008 (thousands of hectares)
4.4 Consumption of leading food commodities in Lesotho, 2003–2005 (thousands of metric tons)
5.1 Population growth rates in Malawi, 1960–2008 (percent)
5.2 Education and labor statistics for Malawi, 2000s
5.3 Harvest area of leading agricultural commodities in Malawi, 2006–2008 (thousands of hectares)
5.4 Value of production of leading agricultural commodities in Malawi, 2005–2007 (millions of US$)
5.5 Consumption of leading food commodities in Malawi, 2003–2005 (thousands of metric tons)
5.6 Climate change issues and recommendations from stakeholder consultations in Malawi
6.1 Population growth rates in Mozambique, 1960–2008 (percent)
6.2 Education and nutrition statistics for Mozambique, 2000s
6.3 Harvest area of leading agricultural commodities in Mozambique, 2006–2008 (thousands of hectares per year)
6.4 Value of production of leading agricultural commodities in Mozambique, 2005–2007 (millions of US$) 158
6.5 Consumption of leading food commodities in Mozambique, 2003–2005 (thousands of metric tons) 158
7.2 Education and labor statistics for South Africa, 2007 178
7.3 Value of production of leading agricultural commodities in South Africa, 2000 and 2008 (millions of US$) 186
7.4 Distribution of irrigated area in South Africa, by province, 1999 (hectares) 194
8.1 Population growth rates in Swaziland, 1960–2008 (percent) 214
8.2 Education and labor statistics for Swaziland, 2000s 219
8.3 Land use in each ecological zone of Swaziland, 1994 222
8.4 Area and production of different crops in Swaziland, 2006–2008 226
8.5 Consumption of leading food commodities in Swaziland, 2003–2005 (thousands of metric tons) 226
8.6 Livelihood strategies and coping mechanisms practiced by rural communities in Swaziland, 2010 243
8.7 Legislation in Swaziland relevant to climate change 246
9.2 Education and labor statistics for Zambia, 2000s 259
9.3 Harvest area of leading agricultural commodities in Zambia, 2006–2008 (thousands of hectares) 266
9.4 Consumption of leading food commodities in Zambia, 2003–2005 (thousands of metric tons) 267
10.1 Population growth rates in Zimbabwe, 1960–2008 (percent) 292
10.2 Education and labor statistics for Zimbabwe, 1900s and 2000s 294
10.3 Harvest area of leading agricultural commodities in Zimbabwe, 2006–2008 (thousands of hectares) 299
10.4 Consumption of leading food commodities in Zimbabwe, 2003–2005 (thousands of metric tons) 299
10.5 Civil society–driven projects and initiatives in Zimbabwe for strengthening the adaptive capacity of farmers and areas of implementation, 2000s and ongoing 316
The world’s population is projected to grow from 7 billion in 2012 to around 9 billion by 2050. In Africa south of the Sahara, the population is likely to surge from around 850 million today to around 1.7 billion in 2050. Southern Africa alone will make up almost 14 percent of the population of Africa south of the Sahara and almost 3 percent of the world’s population in 2050. Most of the people comprising this population increase are expected to live in urban areas and to have higher incomes than currently is the case, which will result in increased demand for food. The challenge of meeting this food demand in a sustainable manner will be enormous. When one takes into account the effects of climate change (higher temperatures, shifting seasons, more frequent and extreme weather events, flooding, and drought) on food production, that challenge grows even more daunting. The global food price spikes of 2008, 2010, and 2012 are harbingers of a troubled future for global food security.

At the end of 2010, IFPRI published *Food Security, Farming, and Climate Change to 2050: Scenarios, Results, Policy Options*, a research monograph by Gerald Nelson and a team of IFPRI researchers that quantitatively assessed the additional challenges to sustainable food security that climate change would bring, focusing on global outcomes but also including national and subnational results. Three years later, Nelson and a group of leading agriculturists and climate change researchers have written this monograph, which draws out those national results based on a detailed global model and enhances them with country-specific analysis and insights for southern Africa.

This is one of three publications (covering West, East, and southern Africa) that make up IFPRI’s *Climate Change in Africa* series. It provides the most comprehensive analysis to date of the scope of climate change as it relates to
food security in southern Africa, including who will be most affected and what policymakers can do to facilitate adaptation. Augmenting the text are dozens of detailed maps that provide graphical representations of the range of food security challenges and the special threats from climate change.

Using a comprehensive integrated empirical analysis, the authors generated information to better guide national development agendas on climate change and have suggested that policymakers should (1) incorporate climate change adaptation strategies in short- and long-term national development planning; (2) develop national capacity in the skills and tools needed for technical assessments, planning, and policy development in the context of climate change; (3) promote sustainable agriculture initiatives that target vulnerable communities; and (4) enhance investments in relevant economic sectors, in particular the agricultural sector. *Southern African Agriculture and Climate Change* will be indispensable to a wide range of readers, including the policymakers, development workers, and researchers who tackle these inextricably linked issues.

Shenggen Fan
Director General, International Food Policy Research Institute
The editors of this monograph and the authors of the individual chapters thank the following organizations for their financial support: the EU through its support for the Climate Change, Agriculture, and Food Security Research Program of the CGIAR (CCAFS); the Federal Ministry for Economic Cooperation and Development, Germany; and the Bill and Melinda Gates Foundation and their respective home institutions. We also thank the Food, Agriculture, and Natural Resources Policy Analysis Network (FANRPAN), IFPRI, the Rockefeller Foundation, the International Development Research Centre (IDRC), and CCAFS for the encouragement they have provided. We give special recognition to Sepo Hachigonta of FANRPAN. He identified counterpart national scientists to undertake the national reports and provided invaluable intellectual leadership in managing the challenging process of coordinating and supporting many different authors while leading the development of the regional overview chapter. We thank Gerald C. Nelson and Lindiwe Majele Sibanda for having the vision and courage to commit to this initiative. Any errors or omissions remain the responsibility of the authors.
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1B</td>
<td>greenhouse gas emissions scenario that assumes fast economic growth, a population that peaks midcentury, and the development of new and efficient technologies, along with a balanced use of energy sources</td>
</tr>
<tr>
<td>A2</td>
<td>greenhouse gas emissions scenario that assumes a very heterogeneous world with continuously increasing global population and regionally oriented economic growth that is more fragmented and slower than in other storylines</td>
</tr>
<tr>
<td>AGOA</td>
<td>African Growth and Opportunity Act</td>
</tr>
<tr>
<td>AIACC</td>
<td>Assessment of Impacts and Adaptation to Climate Change</td>
</tr>
<tr>
<td>AR4</td>
<td>Fourth Assessment Report of the Intergovernmental Panel on Climate Change</td>
</tr>
<tr>
<td>B1</td>
<td>greenhouse gas emissions scenario that assumes a population that peaks midcentury (like A1B) but with rapid changes toward a service and information economy and the introduction of clean and resource-efficient technologies</td>
</tr>
<tr>
<td>CAADP</td>
<td>Comprehensive African Agricultural Development Program</td>
</tr>
<tr>
<td>CANGO</td>
<td>Coordinating Assembly of Non Governmental Organizations</td>
</tr>
<tr>
<td>CCAA</td>
<td>Climate Change Adaptation in Africa</td>
</tr>
<tr>
<td>CCAFS</td>
<td>The Climate Change, Agriculture, and Food Security Research Program of the CGIAR</td>
</tr>
</tbody>
</table>
CNR National Meteorological Research Center, France
CNRM-CM3 National Meteorological Research Center–Climate Model 3
CSIRO Commonwealth Scientific and Industrial Research Organisation, Australia
CSIRO MARK 3 Climate model developed at the Australia Commonwealth Scientific and Industrial Research Organization
DFID Department for International Development
DM Disaster Management
DSSAT Decision Support Software for Agrotechnology Transfer
ECHAM 5 fifth-generation climate model developed at the Max Planck Institute for Meteorology (Hamburg)
FANRPAN Food, Agriculture, and Natural Resources Policy Analysis Network
FAO Food and Agriculture Organization of the United Nations
FMD foot and mouth disease
FPU food production unit
GCM general circulation model
GDP gross domestic product
IAM integrated assessment model
IDRC International Development Research Centre
IFPRI International Food Policy Research Institute
IFRC International Federation of Red Cross and Red Crescent Societies
IMPACT International Model for Policy Analysis of Agricultural Commodities and Trade
IPCC Intergovernmental Panel on Climate Change
IUCN International Union for Conservation of Nature
KDDP Komati Downstream Development Project
LHWP Lesotho Highlands Water Project
LIMID Livestock Management and Infrastructure Development Program
LUSIP Lower Usuthu Smallholder Irrigation Project
MDG Millennium Development Goal
MIROC 3.2 Model for Interdisciplinary Research on Climate, developed at the University of Tokyo Center for Climate System Research
MOA Ministry of Agriculture
NAMBOARD National Agricultural Marketing Board
NAMPAADD National Master Plan for Arable Agriculture and Dairy Development
NAPA National Adaptation Programme of Action [on Climate Change]
NDP National Development Plan
NGO nongovernmental organization
NMC National Maize Corporation
OVCS orphaned and vulnerable children
R South African rand
SACU South African Customs Union
SADC Southern Africa Development Community
SADP Swaziland Agricultural Development Program
SARDC Southern African Research and Documentation Centre
SCCP Swaziland Climate Change Programme
SCF seasonal climate forecast
SNL Swazi Nation land
SPAM Spatial Production Allocation Model
SRES Special Report on Emissions Scenarios, a report by the Intergovernmental Panel on Climate Change that was published in 2000
SSA Swaziland Sugar Association
SWADE Swaziland Water and Agricultural Development Enterprise
TDL title deed land
UN United Nations
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Full Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>UNDP</td>
<td>United Nations Development Programme</td>
</tr>
<tr>
<td>UNFCCC</td>
<td>United Nations Framework Convention on Climate Change</td>
</tr>
<tr>
<td>UNPOP</td>
<td>United Nations Department of Economic and Social Affairs–Population Division</td>
</tr>
<tr>
<td>US$</td>
<td>US dollars</td>
</tr>
<tr>
<td>UZ</td>
<td>University of Zimbabwe</td>
</tr>
</tbody>
</table>