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ABSTRACT 

The paper extends the methodology of parametric decomposition of the Malmquist productivity index 
using an output distance function. This approach addresses common methodological issues in total factor 
productivity estimation to produce credible and relevant results. The Malmquist index can be decomposed 
into several components: technical change (further broken down into technical change magnitude, input 
bias, and output bias), technical efficiency change, scale efficiency change, and output-mix effect. A 
translog output distance function is chosen to represent the production technology, and each component 
of the Malmquist index is computed using the estimated parameters. This parametric approach allows us 
to statistically test hypotheses regarding different components of the Malmquist index and the nature of 
production technology. The empirical application to Chinese agriculture shows that productivity grows at 
2 percent per year on average from 1978 through 2010. The growth is mostly driven by technical change, 
which is found to be technology neutral. 

Keywords:  Malmquist index, output distance function, translog, bias, scale efficiency, Chinese 
agriculture 

JEL classification: C12, C23, D24, Q10 
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1.  INTRODUCTION 

Productivity change is defined as the ratio of change in outputs to change in inputs. Caves, Christensen, 
and Diewert (1982) introduced the Malmquist index to measure productivity through distance functions. 
Färe et al. (1994) showed that the index can be directly estimated using nonparametric techniques like 
data envelopment analysis (DEA). They also developed the decomposition of the Malmquist index into 
two mutually exclusive and exhaustive components: technical change and efficiency change. Many 
researchers have since extended that decomposition to develop a more detailed analysis of the Malmquist 
index, including several alternative approaches to understand technical change and scale efficiency (Färe 
et al. 1997; Balk 2001; Lovell 2003; Ray 2003). 

The majority of Malmquist index estimation falls under the nonparametric DEA approach (Färe, 
Grosskopf, and Roos 1998). The DEA approach estimates the Malmquist index and its components 
through the calculation of distance functions under both constant and variable returns-to-scale 
technologies. The popularity of DEA stems from the advantages of the nonparametric approach: easy to 
compute, applicable in cases of multiple outputs, no assumptions of economic behavior such as cost 
minimization or profit maximization, no need for price information, neither any particular functional form 
for estimation nor a large number of observations. Such features are attractive in cases where price data 
are unavailable or cannot be constructed in detail, the sample is too small, or there is insufficient 
understanding of firm behavior. However, the nonparametric approach cannot provide a way to directly 
test the statistical significance or hypotheses regarding the significance of the assembling components or 
model specification. It also cannot separate measurement errors and random noise from technical 
inefficiency. 

The parametric approach provides a solution to address the shortcomings of nonparametric 
techniques and has been adopted by some recent studies in the estimation of the Malmquist index (Balk 
2001; Fuentes, Grifell-Tatje, and Perelman 2001; Pantzios, Karagianis, and Tzouvelekas 2011). In the 
parametric approach, the Malmquist index is not directly obtained through the estimation of distance 
functions under different returns-to-scale technologies. Instead the Malmquist index and its components 
are calculated based on the fitted distance function with globally variable returns to scale, evaluated at 
adjacent time periods’ input and output quantities, as implemented by Balk (2001), Fuentes, Grifell-Tatje, 
and Perelman (2001), Orea (2002), and  Pantzios, Karagianis, and Tzouvelekas (2011). In addition to 
statistical testing, the parametric approach has the advantages of accommodating random errors and 
enabling different interactions between outputs and inputs if a flexible functional form is chosen to 
closely approximate the underlying production technology. 

This paper extends the methodology of Balk (2001) and Färe et al. (1997) to decompose the 
Malmquist index into different components while simultaneously taking account of technology bias and 
scale efficiency change. We test some hypotheses regarding the production technology, functional 
specification, and returns to scale by imposing parametric restrictions in the estimation. The hypotheses 
include (1) no technical inefficiency; (2) no heterogeneous inefficiency effect; (3) no technical change; 
(4) production technology exhibits input Hicks neutrality (no input bias); (5) output Hicks neutrality (no 
output bias); (6) input and output Hicks neutrality; (7) input-output separability; (8) Cobb-Douglas 
functional form; and (9) constant returns to scale (CRS). The test of each hypothesis examines the 
corresponding components of the Malmquist index. If the technical efficiency term is statistically not 
different from zero, there will be no efficiency change and the contribution of efficiency change to 
productivity growth will be zero. If technical change or its components are insignificant, no productivity 
growth comes from improvement in the production frontier. If the functional form can be simplified to the 
Cobb-Douglas function, the production technology becomes time invariant and separable. Finally, if the 
hypothesis of constant returns to scale is not rejected, the scale effect term disappears from the Malmquist 
index. 
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By answering these questions, the paper adds value to the existing literature in several ways. 
First, it decomposes the Malmquist productivity index into different components using an output distance 
function. Unlike Pantzios, Karagianis, and Tzouvelekas (2011), the decomposition of this paper is based 
on the geometric mean of two adjacent Malmquist indexes, filling a gap in the existing literature of 
productivity analysis. Second, it demonstrates the advantages of the parametric output distance function 
approach to characterizing the agricultural technology and productivity decomposition. The empirical 
model is a four-output, four-input stochastic output distance function in 31 Chinese provinces over the 
1979–2010 period. This technique is appropriate for the issue at hand because it requires only quantity 
data on inputs and outputs, which are well recorded and easily accessible. It does not require price 
information, which is hard to collect and construct. Third, the parametric approach addresses common 
methodological issues in total factor productivity (TFP) estimation like testing hypotheses regarding the 
production technology, which has been lacking in the empirical literature. For example, the hypothesis of 
input-output separability is rejected, which suggests that results from a stochastic production function can 
be misleading. This technique can also be applied to other economic investigations of productivity in 
various settings to produce credible and relevant results. Finally, this paper updates the productivity 
performance of the whole agricultural sector in China with the latest data, adding evidence for the 
purpose of designing agricultural development strategy in the developing country context. We found that 
TFP grows at 2 percent annually in China, which is consistent with other studies of the country. The 
results have important implications in the design of policy to promote productivity growth in China. For 
example, past agricultural policies have failed to address China’s huge efficiency gap so as to decrease 
the wasteful use of agricultural inputs and reduce costs to the environment. Whether productivity can be 
improved through a shift in current technology is another relevant issue worth exploring. Additionally, 
given the considerable spatial variation, agricultural development policies need to be tailored to local 
conditions during planning and implementation. 

The paper is organized as follows. Section 2 presents the theoretical framework of the 
decomposition of the Malmquist index based on an output-oriented distance function. Assuming a 
translog output distance function, the parametric calculation of different components of the Malmquist 
index is derived in Section 3. The data and empirical results are discussed in Sections 4 and 5. Section 6 
concludes with the major findings and policy implications derived from the study. 
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2.  THEORETICAL FRAMEWORK OF MALMQUIST INDEX DECOMPOSITION 

The production technology is defined as the set of all feasible input-output combinations. The production 
technology T in period t is  

 𝑇𝑡 = (𝑥𝑡 ,𝑦𝑡), t =  1, … , T, (1) 

where 𝑥𝑡 is a K-dimensional vector of nonnegative inputs 𝑥𝑡 ≡ (𝑥1𝑡 , … , 𝑥𝐾𝑡 ) ∈ ℜ+
𝐾 ,𝑦𝑡 is an M-dimensional 

vector of nonnegative outputs 𝑦𝑡 ≡ (𝑦1𝑡 , … ,𝑦𝑀𝑡 ) ∈ ℜ+
𝑀, and 𝑇𝑡 is the production possibility set for all 

feasible input-output combinations in period t. 

The output distance function Do
t (xt, yt) is measured as the distance of a vector of inputs and 

outputs in period t with respect to the technical frontier in period t: 

 𝐷𝑜𝑡(𝑥𝑡,𝑦𝑡) = min{𝜃 > 0: (𝑥𝑡 ,𝑦𝑡/θ) ∈ 𝑇}, t =  1, … , T, (2) 

where subscript o refers to output orientation. The output distance function satisfies the inequality 
𝐷𝑜𝑡(𝑥𝑡,𝑦𝑡) ≤ 1. 𝐷𝑜𝑡(𝑥𝑡 ,𝑦𝑡) = 1 indicates that the production unit is on the frontier of the production set 
and hence is technically efficient. 

The Malmquist index measures the TFP change between two adjacent periods by calculating the 
ratio of the distance of each data point relative to a common technological frontier. Following Färe et al. 
(1994), the Malmquist index between period t and t + 1 based on the period t technology is given by 

 𝑇𝐹𝑃𝑜𝑡(𝑥𝑡,𝑦𝑡 ,𝑥𝑡+1,𝑦𝑡+1) = 𝐷𝑜𝑡(𝑥𝑡+1,𝑦𝑡+1)
𝐷𝑜𝑡(𝑥𝑡,𝑦𝑡)

. (3) 

The Malmquist index can be greater than, equal to, or less than 1 if productivity grows, is 
stagnant, or declines between the two periods. 

Similarly, the Malmquist index between period t and t + 1 based on the period t + 1 technology is 

 𝑇𝐹𝑃𝑜𝑡+1(𝑥𝑡,𝑦𝑡,𝑥𝑡+1,𝑦𝑡+1) = 𝐷𝑜𝑡+1(𝑥𝑡+1,𝑦𝑡+1)
𝐷𝑜𝑡+1(𝑥𝑡,𝑦𝑡)

. (4) 

Measures of the productivity change between period t and t + 1 generally change if the reference 
technology is different. To avoid the arbitrary choice of reference technology, Färe et al. (1994) suggested 
a geometric mean of the two Malmquist indexes: 

 𝑇𝐹𝑃𝑜
𝑡,𝑡+1(𝑥𝑡,𝑦𝑡 ,𝑥𝑡+1,𝑦𝑡+1) = �𝐷𝑜

𝑡(𝑥𝑡+1,𝑦𝑡+1)
𝐷𝑜𝑡(𝑥𝑡,𝑦𝑡)

𝐷𝑜𝑡+1(𝑥𝑡+1,𝑦𝑡+1)
𝐷𝑜𝑡+1(𝑥𝑡,𝑦𝑡)

�
1/2

. (5) 

Balk (2001) showed that the Malmquist index can be decomposed into four components: primal 
technical change (TC), technical efficiency change (EC), scale efficiency change (SEC), and output-mix 
effect (OME): 

 𝑇𝐹𝑃 = 𝑇𝐶 ∙ 𝐸𝐶 ∙ 𝑆𝐸𝐶 ∙ 𝑂𝑀𝐸, (6) 

where  𝑇𝐶 = � 𝐷𝑜𝑡�𝑥𝑡+1,𝑦𝑡+1�
𝐷𝑜𝑡+1(𝑥𝑡+1,𝑦𝑡+1)

𝐷𝑜𝑡�𝑥𝑡,𝑦𝑡�
𝐷𝑜𝑡+1(𝑥𝑡,𝑦𝑡)�

1/2
, (7) 
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 EC = Dot+1�xt+1,yt+1�
Dot (xt,yt)

, (8) 

 𝑆𝐸𝐶 = �𝑂𝑆𝐸
𝑡�𝑥𝑡+1,𝑦𝑡�

𝑂𝑆𝐸𝑡(𝑥𝑡,𝑦𝑡)
𝑂𝑆𝐸𝑡+1�𝑥𝑡+1,𝑦𝑡+1�
𝑂𝑆𝐸𝑡+1(𝑥𝑡,𝑦𝑡+1) �

1/2
, (9) 

and  𝑂𝑀𝐸 = �𝑂𝑆𝐸
𝑡�𝑥𝑡+1,𝑦𝑡+1�

𝑂𝑆𝐸𝑡(𝑥𝑡+1,𝑦𝑡)
𝑂𝑆𝐸𝑡+1�𝑥𝑡,𝑦𝑡+1�
𝑂𝑆𝐸𝑡+1(𝑥𝑡,𝑦𝑡) �

1/2
. (10) 

The magnitude of the first term, TC, in general depends on the particular input-output 
combination. There is technical progress when TC is greater than 1 and technical regress when it is less 
than 1. If TC(xt+1, yt+1) = TC(xt, yt), the technical change is output neutral. 

The technical efficiency, TE = Do
t (xt, yt), measures the distance of the firm’s position in period t 

relative to the period t frontier of the technology, or how far the observed production is from maximum 
potential production. By definition TE ≤ 1, and the production unit is efficient if and only if TE = 1. The 
second term, EC, measures technical efficiency change between period t and t + 1. If EC is greater than 1, 
the production unit moves closer to the frontier—in other words, the production unit is catching up to the 
production frontier by improving efficiency. A value of less than 1 indicates efficiency regress. 

The third term, SEC, refers to scale efficiency change between two periods, which measures how 
the output-oriented scale efficiency changes over time conditional on a certain output mix. It is the ratio 
of the output-orientated measure of scale efficiency (OSE) in period t and t + 1, where OSEt(xt, yt) =
Dot
� �xt,yt�
Dot (xt,yt)

  and Do
t�(xt, yt) is the output distance function based on the cone technology 

Tt� = {(λxt, λyt)|(xt, yt) ∈ Tt, λ > 0}. If OSE = 1, the frontier point that can be reached by proportionally 
expanding yt is a point of technically optimal scale. At that point, the technology exhibits constant returns 
to scale and scale elasticity equals 1: ϵot (xt, yt) = 1. If SEC is greater than 1, the output bundle at period 
t + 1 lies closer to the point of the technically optimal than the output bundle at period t and thus scale 
efficiency improves. If SEC is less than 1, the scale efficiency deteriorates. 

The fourth term is labeled the output-mix effect by Balk (2001), which measures how the distance 
of the frontier point to the frontier of the cone technology changes when the output mix changes, where 
the cone technology is the technology generated from the underlying observed technology. That is, OME 
gives the change in the output-oriented scale efficiency from a change in the output mix when inputs 
remain constant. When the output mix changes, the scale efficiency increases if OME is greater than 1, 
and scale efficiency declines if OME is less than 1. In the case of a single output, OME = 1. Under global 
constant returns to scale technology, both SEC and OME are identically equal to 1. 

Färe et al. (1997) suggest that the technical change component can be further decomposed to 
allow determining the contribution of technical change neutrality in productivity change: 

𝑇𝐶 = �
𝐷𝑜𝑡(𝑥𝑡+1,𝑦𝑡+1)
𝐷𝑜𝑡+1(𝑥𝑡+1,𝑦𝑡+1)

𝐷𝑜𝑡(𝑥𝑡 ,𝑦𝑡)
𝐷𝑜𝑡+1(𝑥𝑡,𝑦𝑡)

�

1
2

=
Do
t (xt, yt)

Do
t+1(xt, yt)

�
Do
t (xt+1, yt+1)

Do
t+1(xt+1, yt+1)

Do
t+1(xt, yt)

Do
t (xt, yt)

�

1
2
 

=
Do
t (xt, yt)

Do
t+1(xt, yt)

�
𝐷𝑜𝑡(𝑥𝑡+1,𝑦𝑡+1)
𝐷𝑜𝑡+1(𝑥𝑡+1,𝑦𝑡+1)

𝐷𝑜𝑡+1(𝑥𝑡+1,𝑦𝑡)
𝐷𝑜𝑡(𝑥𝑡+1,𝑦𝑡)

�

1
2
�
𝐷𝑜𝑡(𝑥𝑡+1,𝑦𝑡)
𝐷𝑜𝑡+1(𝑥𝑡+1,𝑦𝑡)

𝐷𝑜𝑡+1(𝑥𝑡,𝑦𝑡)
𝐷𝑜𝑡(𝑥𝑡,𝑦𝑡)

�

1
2
 

= 𝑇𝐶𝑀 ∙ 𝑂𝐵 ∙ 𝐼𝐵, (11) 

where  TCM = Dot �xt,yt�
Dot+1(xt,yt)

, (12) 
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 OB = � 𝐷𝑜𝑡�𝑥𝑡+1,𝑦𝑡+1�
𝐷𝑜𝑡+1(𝑥𝑡+1,𝑦𝑡+1)

𝐷𝑜𝑡+1�𝑥𝑡+1,𝑦𝑡�
𝐷𝑜𝑡(𝑥𝑡+1,𝑦𝑡) �

1/2
, (13) 

and  IB = � 𝐷𝑜𝑡�𝑥𝑡+1,𝑦𝑡�
𝐷𝑜𝑡+1(𝑥𝑡+1,𝑦𝑡)

𝐷𝑜𝑡+1�𝑥𝑡,𝑦𝑡�
𝐷𝑜𝑡(𝑥𝑡,𝑦𝑡) �

1/2
. (14) 

TCM is the index of technical change magnitude. It is greater than 1 if the input requirement set 
expands along a ray through period t data, and less than 1 if the input requirement set shrinks. OB refers 
to the period t + 1 output bias index. It compares the magnitude of technical change along a ray through 
𝑦𝑡+1 with the magnitude of technical change along a ray through 𝑦𝑡 while holding the input vector 
constant at 𝑥𝑡+1. The period t input bias index (IB) compares the magnitude of technical change along a 
ray through 𝑥𝑡+1 with the magnitude of technical change along a ray through 𝑥𝑡, holding the output 
vector constant at 𝑦𝑡. The bias indexes OB and IB are greater than 1 if the magnitude of technical change 
measured along a ray through period t + 1 data exceeds the magnitude of technical change measured 
along a ray through period t data, and vice versa. Färe et al. (1997) prove that OB (IB) is equal to 1 if the 
technology is said to exhibit implicit Hicks output-neutral (input-neutral) technical change. In other 
words, the output (input) set shifts in or out by the same proportion along a ray through period t + 1 data 
as it does along the ray through period t data. OB equals 1 in the case of a single output and IB equals 1 in 
the case of a single input. 
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3.  PARAMETRIC ESTIMATION OF THE MALMQUIST INDEX 

Unlike the nonparametric DEA approach, the parametric approach requires a predefined functional form 
of the distance function for estimation. According to Coelli and Perelman (2000), this specification fulfills 
a set of desirable characteristics: flexible, easy to derive, and allowing the imposition of homogeneity. 
The flexible form of the translog has been widely used to estimate distance functions as it meets all the 
required characteristics (Balk 2001; Orea 2002; Ray 2003; Kounetas and Tsekouras 2007; Pantzios, 
Karagianis, and Tzouvelekas 2011). This paper will also adopt the translog functional form. 

The period t technology is represented by the translog output distance function 

𝑙𝑛Do
t (xt, yt) = 𝛼0 + �𝛼𝑘𝑙𝑛𝑥𝑘𝑡

𝐾

𝑘=1

+ � 𝛽𝑚𝑙𝑛𝑦𝑚𝑡
𝑀

𝑚=1

+
1
2
� � 𝛼𝑘𝑘′𝑙𝑛𝑥𝑘𝑡 𝑙𝑛𝑥𝑘′

𝑡
𝐾

𝑘′=1

𝐾

𝑘=1

 

+
1
2
� � 𝛽𝑚𝑚′𝑙𝑛𝑦𝑚𝑡 𝑙𝑛𝑦𝑚′

𝑡
𝑀

𝑚′=1

𝑀

𝑚=1

+ � � 𝛾𝑘𝑚𝑙𝑛𝑥𝑘𝑡 𝑙𝑛𝑦𝑚𝑡
𝑀

𝑚=1

𝐾

𝑘=1

+ �𝛿𝑘𝑡𝑙𝑛𝑥𝑘𝑡 𝑡
𝐾

𝑘=1

 

+∑ 𝜏𝑚𝑡𝑙𝑛𝑦𝑚𝑡 𝑡𝑀
𝑚=1 + 𝜃𝑡𝑡 + 1

2
𝜃𝑡𝑡𝑡2,𝑥 ∈ ℜ+

𝐾 ,𝑦 ∈ ℜ+
𝑀. (15) 

The parameters must satisfy a set of restrictions. First, the condition of linear homogeneity in 
outputs is imposed to obtain an output-oriented radial distance function: 

 ∑ 𝛽𝑚𝑀
𝑚=1 = 1, ∑ 𝛽𝑚𝑚′

𝑀
𝑚′=1 = 0, ∑ 𝜏𝑚𝑡

𝑀
𝑚=1 = 0, ∑ 𝛾𝑘𝑚𝐾

𝑚=1 = 0. 

Second, symmetry is applied: 

𝛼𝑘𝑘′ = 𝛼𝑘′𝑘, 𝛽𝑚𝑚′ = 𝛽𝑚′𝑚. 

The output distance function (15) is expressed as 𝑙𝑛𝐷𝑜𝑡 = 𝑇𝐿(𝑥𝑡 ,𝑦𝑡 , 𝑡;𝜋) for notational 
convenience, where TL denotes the translog function specification and 𝜋 = (𝛼,𝛽, 𝛾, 𝛿, 𝜏,𝜃) is the vector 
of the parameters to be estimated. The parameters of the distance function can be estimated only if linear 
homogeneity in outputs is imposed. Following Coelli and Perelman (2000), all output quantities in the 
right-hand side of equation (15) are divided by the quantity of an arbitrary output, say the first output, as 
the numeraire. Let’s denote 𝑦𝑚∗ = 𝑦𝑚/𝑦1, and the translog function is rewritten as 

lnDo
t �𝑥𝑡, 𝑦

𝑡

𝑦1
𝑡� = 𝑇𝐿 �𝑥𝑡 , 𝑦

𝑡

𝑦1
𝑡 , 𝑡;𝜋� and hence 

 − ln(𝑦1𝑡) = 𝑇𝐿(𝑥𝑡 ,𝑦𝑚∗ , 𝑡;𝜋)− 𝑙𝑛Do
t (xt, yt). (16) 

Since 𝑙𝑛Do
t (xt, yt) is unobservable, setting 𝑢𝑡 = −𝑙𝑛Do

t (xt, yt) and adding a stochastic term 𝑣, 
one obtains the familiar production stochastic frontier 

−𝑙𝑛𝑦1𝑡 = 𝑇𝐿(𝑥𝑡 ,𝑦∗, 𝑡;𝜋) + 𝑢𝑡 + 𝑣𝑡  = 𝛼0 + �𝛼𝑘𝑙𝑛𝑥𝑘𝑡
𝐾

𝑘=1

+ � 𝛽𝑚𝑙𝑛𝑦𝑚𝑡
∗

𝑀

𝑚=2

 

+
1
2
� � 𝛼𝑘𝑘′𝑙𝑛𝑥𝑘𝑡 𝑙𝑛𝑥𝑘′

𝑡
𝐾

𝑘′=1

𝐾

𝑘=1

+
1
2
� � 𝛽𝑚𝑚′𝑙𝑛𝑦𝑚𝑡

∗𝑙𝑛𝑦𝑚′
𝑡 ∗

𝑀

𝑚′=2

𝑀

𝑚=2

 

+� � 𝛾𝑘𝑚𝑙𝑛𝑥𝑘𝑡 𝑙𝑛𝑦𝑚𝑡
∗

𝑀

𝑚=2

𝐾

𝑘=1

+ �𝛿𝑘𝑡𝑙𝑛𝑥𝑘𝑡 𝑡
𝐾

𝑘=1

+ � 𝜏𝑚𝑡𝑙𝑛𝑦𝑚𝑡
∗𝑡

𝑀

𝑚=2

+ 𝜃𝑡𝑡 +
1
2
𝜃𝑡𝑡𝑡2 

+𝑢𝑡 + 𝑣𝑡, (17) 
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where 𝑢 represents the stochastic shortfall of the production unit’s output from the production frontier due 
to technical inefficiency, 𝑢 is a random nonnegative error term, and 𝑣 is a symmetric and normally 
distributed error term of N(0,𝜎𝑣2). Both error terms are independently distributed. Identification of the 
inefficiency stochastic term requires some structure to be placed on the heterogeneous and temporal 
pattern of technical efficiency. Following Battese and Coelli (1995), the stochastic term 𝑢𝑖𝑡 is defined as a 
normally distributed variable 𝑁(𝜇𝑖𝑡;𝜎𝑢2) truncated at zero. 

 𝜇𝑖𝑡 = 𝑧𝑖𝑡𝜑, (18) 

where 𝑧𝑖𝑡 is a vector of observable explanatory variables and 𝜑 is a vector of parameters to be estimated. 
The predicted value of the output distance function can be estimated as a conditional expectation:  

 Do
t (xt, yt) = 𝐸[exp(−𝑢𝑡) |𝜀𝑡] = 1−Φ(𝜎𝐴−𝜒𝜀𝑡/𝜎𝐴)

1−Φ(𝜒𝜀𝑡/𝜎𝐴)
exp (𝜒𝜀𝑡 + 𝜎𝐴2/2), (19) 

where 𝜀𝑡 = 𝑢𝑡 + 𝑣𝑡,𝜎2 = 𝜎𝑢2 + 𝜎𝑣2,𝜒 = 𝜎𝑢2

𝜎2
,𝜎𝐴 = �𝜒(1 − 𝜒)𝜎2and Φ represents a standard normal 

distribution function. 
Once the parameters of equation (17) are estimated, the assembling parts of the Malmquist 

productivity index and its components can be calculated (Balk 2001; Fuentes, Grifell-Tatje, and Perelman 
2001). 
Technical change magnitude: 

TCM =
Do
t (xt, yt)

Do
t+1(xt, yt)

= exp�𝑇𝐿�𝑥𝑡,𝑦𝑚𝑡
∗, 𝑡;𝜋�� − 𝑇𝐿�𝑥𝑡 ,𝑦𝑚𝑡

∗, 𝑡 + 1;𝜋��� 

 = exp �  (−1) × �∑ 𝛿𝑘𝑡𝑙𝑛𝑥𝑘𝑡𝐾
𝑘=1 +∑ �̂�𝑚𝑡𝑙𝑛𝑦𝑚𝑡

∗𝑀
𝑚=2 + 𝜃�𝑡 + 𝜃�𝑡𝑡 �𝑡 + 1

2
���. (20) 

Output bias index: 

OB = exp �1
2

× �𝑇𝐿�𝑥𝑡+1,𝑦𝑚𝑡+1
∗, 𝑡;𝜋�� − 𝑇𝐿�𝑥𝑡+1,𝑦𝑚𝑡+1

∗, 𝑡 + 1;𝜋��+ 𝑇𝐿�𝑥𝑡+1,𝑦𝑚𝑡
∗, 𝑡 + 1;𝜋�� −

− 𝑇𝐿�𝑥𝑡+1,𝑦𝑚𝑡
∗, 𝑡;𝜋���� = 𝑒𝑥𝑝 �1

2
× �∑ �̂�𝑚𝑡(𝑙𝑛𝑦𝑚𝑡

∗ − 𝑙𝑛𝑦𝑚𝑡+1
∗𝑀

𝑚=2 )��. (21) 

Input bias index: 

IB = exp �1
2

× �𝑇𝐿�𝑥𝑡+1,𝑦𝑚𝑡
∗, 𝑡;𝜋�� − 𝑇𝐿�𝑥𝑡+1,𝑦𝑚𝑡

∗, 𝑡 + 1;𝜋�� + 𝑇𝐿�𝑥𝑡 ,𝑦𝑚𝑡
∗, 𝑡 + 1;𝜋�� −

−𝑇𝐿�𝑥𝑡 ,𝑦𝑚𝑡
∗, 𝑡;𝜋���� = 𝑒𝑥𝑝 �1

2
× �∑ 𝛿𝑘𝑡(𝑙𝑛𝑥𝑘𝑡 − 𝑙𝑛𝑥𝑘𝑡+1)𝐾

𝑘=1 ��. (22) 

Efficiency change: 

 EC = exp�𝑇𝐿�𝑥𝑡+1,𝑦𝑚𝑡+1
∗, 𝑡 + 1;𝜋�� − 𝑇𝐿�𝑥𝑡 ,𝑦𝑚𝑡

∗, 𝑡;𝜋���. (23) 

Balk (2001) showed that the SEC and OME can be computed by using estimates of the output-
oriented scale efficiency without estimating the output distance function under constant returns to scale, 
as required in the nonparametric approach. For any arbitrary pair (�̅�,𝑦�) the output-oriented measure of 
scale efficiency of a translog distance function is 

 𝑙𝑛𝑂𝑆𝐸𝑡(�̅�,𝑦�) = − [𝜖𝑜𝑡 (�̅�,𝑦�)−1]2

2𝛼𝑡
, (24) 
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where the scale elasticity 

 𝜖𝑜𝑡(�̅�,𝑦�) = ∑ 𝜕𝑙𝑛Dot (�̅�,𝑦�)
𝜕𝑙𝑛𝑥𝑘

𝐾
𝑘=1 =  ∑ �𝛼�𝑘 + ∑ 𝛼�𝑘𝑘′𝑙𝑛𝑥𝑘′

𝑡𝐾
𝑘′=1 +∑ 𝛾�𝑘𝑚𝑙𝑛𝑦𝑚𝑡

∗𝑀
𝑚=2 + ∑ 𝛿𝑘𝑡𝑡𝐾

𝑘=1 �𝐾
𝑘=1 , (25) 

and 𝛼𝑡 = ∑ ∑ 𝛼�𝑘𝑘′
𝐾
𝑘′=1

𝐾
𝑘=1 . 

Since local scale efficiency can never exceed the optimal scale efficiency, 𝑂𝑆𝐸𝑡(�̅�,𝑦�) ≤ 1,  
which requires that 𝛼𝑡 > 0. Equation (25) indicates that the output-oriented scale efficiency of a 
particular input-output combination can be obtained from the output distance function–based measure of 
local scale elasticity 𝜖 pertaining to this combination, and 𝜖 can be evaluated at any data point from the 
parameter estimates of the output distance function. 
Scale efficiency change: 

 𝑆𝐸𝐶 = 𝑒𝑥𝑝 �1
2

× �− �𝜖𝑜𝑡 �𝑥𝑡+1,𝑦𝑡�−1�
2

2𝛼𝑡
+ �𝜖𝑜𝑡 �𝑥𝑡,𝑦𝑡�−1�

2

2𝛼𝑡
− �𝜖𝑜𝑡+1�𝑥𝑡+1,𝑦𝑡+1�−1�

2

2𝛼𝑡
+ �𝜖𝑜𝑡+1�𝑥𝑡,𝑦𝑡+1�−1�

2

2𝛼𝑡
��. (26) 

Output-mix effect: 

 𝑂𝑀𝐸 = 𝑒𝑥𝑝 �1
2

× �− �𝜖𝑜𝑡 �𝑥𝑡+1,𝑦𝑡+1�−1�
2

2𝛼𝑡
+ �𝜖𝑜𝑡 �𝑥𝑡+1,𝑦𝑡�−1�

2

2𝛼𝑡
− �𝜖𝑜𝑡+1�𝑥𝑡,𝑦𝑡+1�−1�

2

2𝛼𝑡
+ �𝜖𝑜𝑡+1�𝑥𝑡,𝑦𝑡�−1�

2

2𝛼𝑡
��. (27) 

Thus, all the assembling components of the Malmquist index can be computed from evaluation of 
the translog output distance function. 
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4.  DATA 

A panel of province-level data is collected for 31 provinces, municipal cities, and autonomous regions 
from the China Statistical Yearbook (China, National Bureau of Statistics, various years). There are four 
subsectors within agriculture: crop, livestock, fishery, and forestry. The subsector outputs are valued at 
constant 2010 billion yuan. Four major agricultural inputs are included: area, labor, machinery, and 
fertilizer. Area is defined as the total sown area in 1,000 hectares, labor measures rural employment in 
10,000 persons, machinery measures agricultural machinery in 10,000 kilowatts hours, fertilizer is the 
consumption of chemical fertilizer in 10,000 metric tons. Although infrastructure and market structure do 
not directly contribute to output growth, they can affect production through improvement in productivity 
and its components. Rural infrastructure is proxied by the share of irrigated area in the crop sown area. 
Agricultural policies include market openness and taxation. Market openness is calculated as the value 
share of agricultural products whose prices are not directly managed or stipulated by the government. 
Taxation is the average rate of net agricultural tax (agricultural tax minus subsidies) per hectare of crop 
sown area. Dummies are introduced to capture unique biophysical conditions in the province. 

Zhang and Brummer (2011) provide a comprehensive review of policy reform in China from 
1978 to 2010, breaking it into six stages. In the first reform stage of decentralization (1978–1983), the 
government procurement quotas were reduced and some commodities were phased out of the 
procurement programs to be traded in markets. Agricultural output grew sharply in this period after the 
establishment of a household responsibility system. In the second stage of marketing system liberalization 
(1984–1989), although more products were liberalized the government maintained control over strategic 
products (grain, cotton, and oilcrops). A rapid increase in input prices dampened farmers’ investment in 
agriculture and resulted in lower output growth. In the third stage, 1989–1993, reform in the grain-
marketing system further cut the number of commodities subject to state procurement programs, but 
regional markets remained segmented due to various price and quantity controls for strategic crops. 
Increased procurement prices characterized the fourth stage, 1994–1999, spurring a fast expansion in 
agricultural output. In the fifth stage, 1998–2003, the grain procurement quota was abolished and a free 
grain market was applied to the majority of China. In the sixth stage, 2003–2010, the government shifted 
its focus from taxing agriculture to supporting producers with policies including input subsidies, direct 
payments, and agricultural tax reform. 

Despite fluctuations and the shifting policy focus, agricultural production exhibited impressive 
growth since reform started. The output of the agricultural sector increased exponentially after reform, as 
the average annual growth rate reached nearly 6 percent during the 1978–2010 period (Table 4.1). 
Although crop production rose at 4.3 percent annually, it was dwarfed by the surge of high-value and 
nutritional animal products in the livestock and fishery sectors, which grew at 8.6 and 13 percent, 
respectively. The structure of input usage also shifted substantially, with modern inputs including 
machinery and fertilizer growing at a faster pace than traditional inputs like land and labor. Given land 
scarcity, rapid urbanization, and economic transformation in the country, it is not surprising that land 
barely expanded and labor engaged in rural activities increased by less than 2 percent per year. On the 
other hand, input intensification is widely observed since new machines serving agricultural production 
grew by 6.3 percent and total fertilizer consumption increased by nearly five times within three decades. 

In terms of regional distribution, the highest agricultural output growth is observed in Xinjiang in 
the northwest, followed by Hainan, Inner Mongolia, and Henan, all driven by rapidly developing crop and 
other sectors. We observe increased modern inputs in those provinces, as well as land expansion in the 
relatively low-population-density regions. On the other hand, low agricultural growth occurred in highly 
urbanized municipalities (Beijing and Shanghai) or provinces facing adverse biophysical conditions 
(Xizang and Qinghai). Slow growth in input use was widespread in those provinces as well.
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Table 4.1—Descriptive statistics 

   Annual growth rate (%) 
 Mean Std. Err. 1978–83 1984–89 1990–93 1994–97 1998–2003 2004–10 1978–2010 

Output (billion 2009 yuan)          
Crop 99.5 64.1 9.0 -0.2 0.5 5.0 1.6 9.1 4.5 
Livestock 60.8 45.7 12.4 10.9 3.8 6.1 6.1 7.1 8.5 
Forestry 6.1 3.7 13.1 -1.8 3.9 1.3 6.6 9.3 4.8 
Fishery 17.8 19.8 15.1 19.1 17.2 10.8 5.5 6.6 12.7 
Input          
Area (in 1,000 hectare) 7105 3246 -0.9 0.3 -0.2 1.3 -0.4 0.6 0.3 
Labor (in 10,000 person) 2323 1210 2.7 2.6 1.8 1.1 1.1 1.1 1.7 
Machinery (in 10,000 kwh) 3005 2714 8.3 7.7 3.4 7.9 5.9 6.4 6.3 
Fertilizer (in 10,000 metric ton) 214 136 12.3 6.2 6.5 5.9 1.6 3.2 5.3 
Infrastructure and policy   0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Electricity (kwh per hectare) 307.5 520.7 3.3 11.7 14.2 10.6 11.0 8.9 10.2 
Irrigation (% of cropland) 36.6 12.7 -0.2 0.2 1.0 1.8 0.4 1.8 1.0 
Market openness (% of ag. value) 86.7 20.2 13.9 16.3 20.8 0.6 2.6 -0.1 8.6 
Tax rate (yuan per hectare) 0.23 3.19 0.3 -0.3 0.0 2.8 6.6 -31.0 -2.6 

Source:  Authors’ calculation based on data from China Statistical Yearbook (China, National Bureau of Statistics, various years). 
Note:  kwh = kilowatt hours.
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5.  EMPIRICAL RESULTS AND DISCUSSION 

Before reporting the estimated productivity growth, we need to check whether the translog functional 
form is suitable for the study. 

Curvature Condition 
We first check whether the curvature condition is satisfied. O’Donnell and Coelli (2005) provide the 
general regularity properties for output distance functions: monotonicity (nondecreasing in outputs and 
nonincreasing in inputs), homogeneity of degree 1 in outputs, convexity in outputs, and quasi-convexity 
in inputs. 

Monotonicity and curvature conditions involve constraints on functions of the partial derivatives 
of the distance function. The elasticity of distance with respect to input k and output m is 

 𝜖𝑘𝑡 (𝑥,𝑦) = 𝜕𝑙𝑛Dot (𝑥,𝑦)
𝜕𝑙𝑛𝑥𝑘

= 𝛼�𝑘 + ∑ 𝛼�𝑘𝑘′𝑙𝑛𝑥𝑘′
𝑡𝐾

𝑘′=1 + ∑ 𝛾�𝑘𝑚𝑙𝑛𝑦𝑚𝑡
∗𝑀

𝑚=2 + ∑ 𝛿𝑘𝑡𝑡𝐾
𝑘=1 , k = 1,…,K (28) 

and 

𝜖𝑚𝑡 (𝑥,𝑦) = 𝜕𝑙𝑛Dot (𝑥,𝑦)
𝜕𝑙𝑛𝑦𝑚∗

= �̂�𝑚 + ∑ �̂�𝑚𝑚′𝑙𝑛𝑦𝑚𝑡
∗𝑀

𝑚′=2 + ∑ 𝛾�𝑘𝑚𝑙𝑛𝑥𝑘𝑡 𝑙𝑛𝑦𝑚𝑡
∗𝑀

𝑚=2 + �̂�𝑚𝑡𝑡, m = 2,…,M (29) 

For the output distance function to be nonincreasing in input k, 

 𝑓𝑘 = 𝜕Dot (𝑥,𝑦)
𝜕𝑥𝑘

= 𝜕𝑙𝑛Dot (𝑥,𝑦)
𝜕𝑙𝑛𝑥𝑘

Dot (𝑥,𝑦)
𝑥𝑘

= 𝜖𝑘𝑡 (𝑥,𝑦) Do
t (𝑥,𝑦)
𝑥𝑘

≤ 0 ⟺ 𝜖𝑘𝑡 (𝑥,𝑦) ≤ 0, k = 1,…,K, (30) 

because distance functions are positive by definition and input quantities are positive. 
For the output distance function to be nondecreasing in output m, 

 ℎ𝑚 = 𝜕Dot (𝑥,𝑦)
𝜕𝑦𝑚∗

= 𝜕𝑙𝑛Dot (𝑥,𝑦)
𝜕𝑙𝑛𝑦𝑚∗

Dot (𝑥,𝑦)
𝑦𝑚∗

= 𝜖𝑚𝑡 (𝑥,𝑦) Do
t (𝑥,𝑦)
𝑦𝑚∗

≥ 0 ⟺ 𝜖𝑚𝑡 (𝑥,𝑦) ≥ 0, m = 2,…,M. (31) 

Evaluated at the sample mean, the elasticities of the output distance function with respect to input 
quantities are -0.12 for land, -0.44 for labor, -0.07 for machinery, and -0.34 for fertilizer. This reflects the 
relative importance of labor and fertilizer in the production process. Moreover, the elasticities with 
respect to outputs indicate the share of each product in production improvement: livestock has the highest 
impact (0.26) compared with fishery (-0.03) or forestry (0.07). The negative values of the input 
elasticities indicate that the estimated output distance function is decreasing in all four inputs. Similarly, 
the distance function is found to be increasing in three out of four outputs based on their elasticities. 

The output distance function is quasi-convexity in inputs if and only if the bordered Hessian 
matrix is negative definite. The Hessian matrix of inputs is 

𝐻𝑖𝑛𝑝𝑢𝑡 = �

0 𝑓1 ⋯ 𝑓𝐾
𝑓1
⋮
𝑓𝐾

𝑓11 ⋯ 𝑓1𝐾
⋮ ⋱ ⋮
𝑓1𝐾 ⋯ 𝑓𝐾𝐾

�, 

where 

 = 𝜕2D
𝜕𝑥𝑘𝜕𝑥𝑘′

= 𝜕𝑓𝑘
𝜕𝑥𝑘′

= 𝜕(𝜖𝑘𝐷/𝑥𝑘)
𝜕𝑥𝑘′

= ( 𝛼�𝑘𝑘′ + 𝜖𝑘𝜖𝑘′ − 𝜉𝑘𝑘′𝜖𝑘)( 𝐷
𝑥𝑘𝑥𝑘′

), (32) 
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and 𝜉𝑘𝑘′ = 1 if 𝑘 = 𝑘′ and 0 otherwise. 
The output distance function is convex in output if and only if the Hessian matrix of outputs is 

positive definite. 

𝐻𝑜𝑢𝑡𝑝𝑢𝑡 = �
ℎ21 ⋯ ℎ2𝑀
⋮ ⋱ ⋮

ℎ2𝑀 ⋯ ℎ𝑀𝑀
�, 

where 

 ℎ𝑚𝑚′ = 𝜕2D
𝜕𝑦𝑚∗ 𝜕𝑦𝑚′

∗ = 𝜕ℎ
𝜕𝑦𝑚′

∗ = 𝜕(𝜖𝑚𝐷/𝑦𝑚)
𝜕𝑦𝑚′

∗ = ( �̂�𝑚𝑚′ + 𝜖𝑚𝜖𝑚′ − 𝜉𝑚𝑚′𝜖𝑚)( 𝐷
𝑦𝑚∗ 𝑦𝑚′

∗ ), (33) 

and 𝜉𝑚𝑚′ = 1 if 𝑚 = 𝑚′ and 0 otherwise. 
The Hessian matrix of inputs is found to be negative semidefinite, and two out of three 

eigenvalues of the output Hessian matrix are positive. These results confirm that the quasi-convexity in 
inputs of the estimated function is satisfied, but convexity in outputs is only partially satisfied. 

Parameter Estimates and Hypotheses Tests 
Parameter estimates of the translog output distance function from the maximum likelihood procedure are 
summarized in Table 5.1. The variance parameters are statistically significant at the 1 percent level, and 
the ratio of 𝜎𝑢2 in total variance is estimated at 0.687. 

Table 5.1—Results of hypotheses tests 

Hypothesis Log-likelihood 
Ratio statistic P-value 

Mean distance function 388.0 0.000 
No heterogeneous technical inefficiency 388.0 0.000 
Input Hicks neutral 9.4 0.024 
Output Hicks neutral 13.7 0.056 
Input and output Hicks neutral 159.7 0.000 
No technical change 2.9 0.567 
Input-output separability 104.8 0.000 
Cobb-Douglas functional form 429.3 0.000 
Constant returns to scale 128.2 0.000 

Source:  Authors’ calculation. 

The parametric approach permits formal testing of the statistical significance of various sources 
of productivity changes. Alternative model specifications can be evaluated using likelihood ratio tests, 
which compare the likelihood functions under the null and alternative hypotheses based on the translog 
output distance function defined earlier. 

First we compare the frontier with the mean output distance function, estimated by considering 
the inefficiency term 𝑢 as nonstochastic and equal to zero. Any deviation from the production frontier is 
interpreted as random error, and the distance function can be estimated using ordinary least squares. This 
assumption translates into the parameter restriction of 

 𝜒 = 𝜇 = 𝜑0 = 𝜑𝐷𝑢𝑚𝑚𝑦 = 𝜑1 = 𝜑2 = 𝜑3 = 0. (34) 

The technical inefficiency exists because the null hypothesis is rejected at the 1 percent level 
(Table 5.2). This is confirmed by the significantly large value of parameter 𝜒 in Table 5.1 (388.0), 
indicating that more than two-thirds of the output variability can be explained by technical inefficiency, 
rather than random shocks. 
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Table 5.2—Parameter estimates of the translog output distance function 

Parameter Parameter Estimate Std. err. Parameter Estimate Std. err. 
𝛽1 lny1 -0.575 (0.437) 𝛾22 -0.026 (0.027) 
𝛽2 lny2 -0.617 (0.150)*** 𝛾23 0.016 (0.036) 
𝛽3 lny3 0.798 (0.163)*** 𝛾31 0.061 (0.052) 
𝛼1 lnx1 0.862 (0.629) 𝛾32 -0.021 (0.016) 
𝛼2 lnx2 -3.242 (0.352)*** 𝛾33 0.091 (0.031)*** 
𝛼3 lnx3 0.079 (0.422) 𝛾41 -0.228 (0.067)*** 
𝛼4 lnx4 1.293 (0.535)** 𝛾42 -0.002 (0.026) 
𝛽11 lny1y1 0.061 (0.089) 𝛾43 0.148 (0.034)*** 
𝛽12 lny1y2 0.082 (0.015)*** 𝜏1𝑡 0.008 (0.005)* 
𝛽13 lny1y3 0.010 (0.030) 𝜏2𝑡 -0.001 (0.002) 
𝛽22 lny2y2 -0.030 (0.008)*** 𝜏3𝑡 -0.004 (0.003)* 
𝛽23 lny2y3 -0.032 (0.012)*** 𝛿1𝑡 -0.019 (0.009)** 
𝛽33 lny3y3 0.042 (0.020)** 𝛿2𝑡 0.015 (0.006)*** 
𝛼11 lnx1x1 -0.425 (0.181)** 𝛿3𝑡 -0.002 (0.005) 
𝛼12 lnx1x2 0.497 (0.106)*** 𝛿4𝑡 0.008 (0.007) 
𝛼13 lnx1x3 -0.094 (0.105) 𝜃𝑡 0.029 (0.038) 
𝛼14 lnx1x4 -0.018 (0.108) 𝜃𝑡𝑡 -0.002 (0.001)*** 
𝛼22 lnx2x2 -0.314 (0.095)*** 𝛼0 4.313 (1.802)** 
𝛼23 lnx2x3 0.205 (0.081)**    
𝛼24 lnx2x4 -0.212 (0.077)*** 𝜑1 0.011 (0.017) 
𝛼33 lnx3x3 -0.098 (0.077) 𝜑2 -0.007 (0.005) 
𝛼34 lnx3x4 0.037 (0.072) 𝜑3 -0.188 (0.051)*** 
𝛼44 lnx4x4 -0.050 (0.091) 𝜑0 -3.725 (0.750)*** 
𝛾11 lny1x1 0.304 (0.086)***    
𝛾12 lny2x1 0.099 (0.032)*** 𝑙𝑛𝜎𝑣2 -4.247 (0.074)*** 
𝛾13 lny3x1 -0.241 (0.043)*** 𝜒 0.687  
𝛾21 lny1x2 -0.132 (0.061)** log likelihood 493.9  

Source:  Authors’ calculation. 
Note:  For outputs, 1 stands for livestock, 2 for fishery, and 3 for forestry. For inputs, 1 stands for area, 2 for labor, 3 for 

machinery, and 4 for fertilizer. For inefficiency terms, 1 stands for share of irrigation, 2 stands for market openness, and 
3 stands for agricultural tax. *** p < 0.01, ** p < 0.05, * p < 0.1. 

In addition, we want to test whether the variables introduced as inefficiency effects improve the 
explanatory power of the model. The null hypothesis is reduced as 

 𝜑𝐷𝑢𝑚𝑚𝑦 = 𝜑1 = 𝜑2 = 𝜑3 = 0. (35) 

The null hypothesis is firmly rejected at 1 percent, indicating that the distribution of inefficiencies 
is not identical across individual observations but depends on the variables capturing local natural 
endowment and policies. This test supports the heterogeneity of the inefficiency term. 

The second set of hypotheses concerns technology bias and technical change by checking the 
parameters used for the OB, IB, and TCM calculations. For the production technology to be implicit 
Hicks neutral in inputs and make no contribution to productivity growth, the input bias index IB = 1, 
lnIB = 0. That means to test parameters, 

 𝛿𝑘𝑡 = 0, for all k = 1,…,K. (36) 
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Similarly, the test for implicit Hicks neutrality in outputs, OB = 1, or lnOB = 0, is 

 𝜏𝑚𝑡 = 0, for all m = 1,…,M. (37) 

No technology bias is a combination of the two tests above. 
If there is no change in the technical change magnitude, TCM = 1, or lnTCM = 0, requiring us to 

jointly test the parameters 

 𝛿𝑘𝑡 = 𝜏𝑚𝑡 = 𝜃𝑡 = 𝜃𝑡𝑡 = 0, for all k = 1,…,K and m = 1,…,M. (38) 

Hence, no technical change, or TC = 1, is the equivalent of a joint test of the significance of 
equations (36), (37), and (38). 

The hypothesis of input Hicks neutrality cannot be rejected, and output Hicks neutrality is 
rejected at the 5 percent level, resulting in a marginal rejection of technology bias. The joint test result 
implies that technical change is present. 

Separability of outputs is an important property of production. It implies that marginal rates of 
substitution between pairs of outputs in the separated group are independent of the levels of outputs 
outside the group; hence outputs can be aggregated in the analysis. 

The hypothesis of separability is defined as all interaction terms between outputs and inputs being 
zero: 

 𝛾𝑘𝑚 = 0, for all k = 1,…,K and m = 1,…,M. (39) 

These restrictions on parameters are strongly rejected, which shows that it is not possible to 
aggregate the four outputs consistently into a single index. This again demonstrates the strength of the 
distance function compared with a traditional stochastic frontier production function, which requires 
aggregation of outputs prior to model estimation, as revealed by Alene, Manyong, and Gockowski (2006). 
Then we test whether the true output distance function can be simplified and represented by the Cobb-
Douglas functional form instead of the translog form. The parameter restrictions are 

 𝛼𝑘𝑘′ = 𝛽𝑚𝑚′ = 𝛾𝑘𝑚 = 𝛿𝑘𝑡 = 𝜏𝑚𝑡 = 0, for all k = 1,…,K and m = 1,…,M. (40) 

The null is rejected, suggesting that the Cobb-Douglas form is inappropriate for this study. 
The last hypothesis is the constant returns to scale, which requires the output distance function to be 
homogenous of degree -1 in input quantities (Coelli and Perelman 2000), or the following restrictions 
should hold: 

∑ 𝛼𝑘𝐾
𝑘=1 = −1,∑ 𝛼𝑘𝑘′

𝐾
𝑘′=1 = 0,∑ 𝛾𝑘𝑚𝐾

𝑘=1 = 0,∑ 𝛿𝑘𝑡𝐾
𝑘=1 = 0, for all k = 1,…,K and 

m = 1,…,M. (41) 

The hypothesis of constant returns to scale is rejected as well, suggesting that the component of 
scale inefficiency should be considered in measuring productivity change. 

Following Färe and Primont (1995), returns to scale can be computed from the output distance 
function as follows: 

𝜀(𝑥𝑡,𝑦𝑡) = −�∑ 𝜕𝑙𝑛𝐷𝑜𝑡 �𝑥𝑡,𝑦𝑡�
𝜕𝑙𝑛𝑥𝑘

𝑡
𝐾
𝑘=1 �. 

The expression in brackets is the proportional increase in all outputs caused by an increase in all 
inputs in the same proportion. Therefore, increasing (decreasing) returns to scale are indicated by a value 
of returns to scale greater (less) than one. 



 

 14 

The mean returns to scale is 0.967. The null hypothesis of constant returns to scale against the 
alternative hypothesis of decreasing returns to scale is strongly rejected, suggesting a decreasing returns 
to scale is appropriate to describe the production technology. 

TFP Change and Its Components 
First we look at technical efficiency. The average technical efficiency is 0.884 despite more efficient 
production in the mid-1990s to the early 2000s. In terms of regional distribution, the northern and central 
regions report the highest efficiency score, where agricultural production is encouraged by favorable 
biophysical conditions and policy support (Table 5.3). Technical efficiency is the lowest in the northeast 
region, with an average technical efficiency index of 0.76. The low efficiency score means that with the 
same amount of inputs the low-performing provinces can increase the level of outputs by about 50 percent 
(appendix Table A.1). The sharp drop in technical efficiency since 2004 is especially alarming; it was 
caused by several weather shocks and the outbreak of animal diseases in northeastern and southern China, 
where pork production is concentrated. 

Table 5.3—Technical efficiency in China 
Region 1978–83 1984–89 1990–93 1994–97 1998–2003 2004–10 1978–2010 
North 0.948 0.898 0.896 0.921 0.947 0.954 0.938 
Northeast 0.808 0.784 0.822 0.796 0.772 0.714 0.757 
Central 0.901 0.893 0.94 0.94 0.957 0.920 0.928 
South 0.859 0.848 0.881 0.918 0.924 0.862 0.882 
Southwest 0.897 0.877 0.891 0.902 0.896 0.781 0.850 
West 0.898 0.824 0.823 0.816 0.859 0.842 0.842 
China 0.884 0.865 0.894 0.906 0.916 0.863 0.884 

Source:  Authors’ calculation. 

We expect rural infrastructure, market openness, and agricultural support to improve technical 
efficiency. The coefficients of market openness and real agricultural support are both of the expected 
sign, but only the latter is statistically significant (Table 5.2). Combined with the significant constant term 
in technical inefficiency variables, we confirm not only the existence of technical inefficiency, but also 
the positive role of agricultural policy in improving technical efficiency. 

Table 5.4 summarizes the parametric estimation of the Malmquist index and its components, and 
Figure 5.1 reports the annual TFP growth of the country. It is clear that the development of productivity 
matches the six stages of reform as described in the data. With the exception of some years at the early 
stages of reform, the annual TFP growth index is above unity, suggesting productivity improvement over 
time. During the period 1978–2010, the average agricultural productivity growth rate is about 2 percent 
per year. After the first stage of reform in 1978–1983, agricultural TFP maintains a steady growth rate of 
more than 2 percent per year (appendix Table A.2). That growth rate is similar to the finding of Nin-Pratt, 
Yu, and Fan (2009) but lower than that of Zhang and Brummer (2011). 
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Table 5.4—Decomposition of Malmquist productivity index 

Period 1978–
83 

1984–
89 

1990–
93 

1994–
97 

1998–
2003 

2004–
10 

1978–
2004 

Productivity (TFP) 0.999 1.021 1.023 1.023 1.022 1.022 1.020 
Technical efficiency change (EC) 0.991 1.010 1.007 1.004 0.998 0.989 0.997 
Technical change (TC) 1.008 1.011 1.015 1.018 1.025 1.032 1.023 
  Technical change magnitude (TCM) 1.009 1.012 1.015 1.018 1.025 1.033 1.024 
  Output bias (OB) 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
  Input bias (IB) 0.999 1.000 1.000 1.000 1.000 1.000 1.000 
Scale efficiency change (SEC) 1.000 1.000 1.001 1.001 1.000 1.001 1.001 
Output-mix effect (OME) 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

Source:  Authors’ calculation. 

Figure 5.1—Evolution of TFP over time 

 
Source:  Authors’ calculation. 

The overall TFP development can be explained by the components of the Malmquist index, 
namely, technical change and bias, technical efficiency change, scale efficiency change, and output-mix 
effect. The technical efficiency change is less than 1 for the whole period, implying deteriorated technical 
efficiency. However, technical efficiency rises from 1984 to 1997, and declines afterward. This decline is 
most pronounced after 2004, further highlighting the urgent need for efficiency improvement. 

Technical change, at 2.3 percent growth per year, is the main driving force of productivity growth 
in China. In addition, technical change exhibits an accelerated pattern over time: the average technical 
change rate increases from 0.8 percent per annum in 1978–1983 to 3.2 percent in 2004–2010. Table 5.4 
also shows the decomposition of the technical change component into the production of technical change 
along a ray through the data of each period (TCM) and the bias effect. Although statistically significant, 
the impact of output bias on productivity is very small. Since both input and output bias indexes are close 
to 1, neither an input bias effect nor an output bias effect has occurred during the period of study and we 
conclude that the technical change is Hicks neutral. In other words, there is a globally neutral shift in the 
production frontier and technical change does not have much influence in the relative contribution of each 
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output or input to the production process. Therefore, a productivity gain cannot be obtained by changing 
the mix of outputs or the mix of inputs, and current technology does not favor an output and input mix 
from different periods. This results in a wide distribution of input and output combinations in Chinese 
agriculture. 

Scale efficiency boosts the Malmquist index by a small margin (average SEC is 1.001), which 
implies that the output mix moves closer to the technical optimal and scale efficiency improves over time. 
Together with the output bias, we observe that the mix of outputs is closer to the optimal mix of outputs 
under the technology as SEC averages 1.001. In relatively land-abundant northern China, scale efficiency 
improves because the output mix is moving closer to the optimal production technology. There is little 
change in the output-oriented scale efficiency from a change in the output mix, and hence OME does not 
contribute to productivity growth. 

Figure 5.2 and Table 5.5 show the spatial distribution of agricultural productivity. The highest 
TFP growth is observed in the northern and northwestern border provinces of Xinjiang and Inner 
Mongolia at more than 5 percent per annum, partly due to the rapid growth of the crop and livestock 
sectors. The northern provinces of Heilongjiang and Jilin follow suit by reporting an impressive TFP 
growth rate of between 4 and 5 percent. Gansu and Ningxia, two inland provinces in north China, also 
benefit from the boom in the agricultural sectors in the neighborhood. On the other hand, the provinces 
exhibiting low productivity growth include Sichuan, Liaoning, and Hunan, mainly caused by efficiency 
deterioration with efficiency scores dropping at more than 1 percent per year. 

Figure 5.2—Map of annual productivity growth 

 
Source: Authors’ calculation. 
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Table 5.5—Decomposition of Malmquist productivity index by region 

Region Indexes 1978–83 1984–89 1990–93 1994–97 1998–2003 2004–10 1978–2010 

North 

TC 1.014 1.017 1.020 1.021 1.027 1.034 1.026 
EC 0.990 0.999 1.000 1.012 0.998 1.006 1.003 
SEC 1.001 0.998 1.000 1.001 1.000 1.002 1.001 
TFP 1.005 1.015 1.020 1.034 1.025 1.042 1.030 

Northeast 

TC 1.025 1.025 1.026 1.029 1.034 1.042 1.034 
EC 0.978 1.031 1.002 0.989 0.999 0.985 0.994 
SEC 1.006 1.001 1.003 0.999 1.001 1.002 1.002 
TFP 1.007 1.056 1.031 1.016 1.033 1.029 1.029 

Central 

TC 1.004 1.008 1.012 1.016 1.024 1.031 1.021 
EC 0.997 1.011 1.002 1.005 1.000 0.991 0.999 
SEC 0.999 0.999 1.001 1.001 1.000 1.001 1.000 
TFP 1.000 1.019 1.015 1.022 1.024 1.023 1.020 

South 

TC 1.008 1.010 1.013 1.016 1.022 1.028 1.020 
EC 0.993 1.012 1.018 1.004 0.997 0.983 0.996 
SEC 1.000 1.000 1.001 1.001 1.000 1.001 1.000 
TFP 1.000 1.022 1.032 1.021 1.018 1.011 1.016 

Southwest 

TC 1.000 1.004 1.009 1.013 1.021 1.029 1.017 
EC 0.984 1.008 1.009 1.000 0.987 0.986 0.993 
SEC 0.999 0.999 0.999 1.000 1.000 1.000 1.000 
TFP 0.983 1.012 1.017 1.013 1.008 1.014 1.010 

West 

TC 1.018 1.022 1.024 1.026 1.033 1.040 1.031 
EC 0.987 0.994 1.004 1.017 1.007 0.990 0.999 
SEC 1.002 1.002 1.004 1.004 1.000 1.004 1.003 
TFP 1.006 1.016 1.032 1.048 1.041 1.035 1.033 

Source:  Authors’ calculation. 
Note:  TC = technical change; EC = technical efficiency change; SEC = scale efficiency change; TFP = total factor 

productivity. 

It is important to examine the distribution of technical change and efficiency change given their 
key role in TFP growth. Similar to the pattern of TFP growth, the northern provinces move closer to the 
production frontier represented by provinces reporting that technical efficiency equals 1 (Hebei, Shanxi, 
Heilongjiang, Henan, and Guizhou). Low TC growth occurs in more urbanized municipalities and the 
coastal provinces of Jiangsu and Zhejiang where agriculture becomes a small player in the local economy. 
Efficiency improves in the northern provinces along with Hubei, while efficiency declines in provinces 
scoring low TFP growth like Liaoning, Hunan, and Sichuan. 

Low and sharply declining efficiency scores are more pronounced in Liaoning, Hainan, and 
Sichuan, where output only reaches less than 70 percent of full potential, and annual technical efficiency 
indexes fall at an alarming rate of 2 to 4 percent per year. This is especially noticeable in Sichuan 
province, which is a major producer of agricultural commodities and contributed 6 percent of national 
agricultural production in 2010. Among the top five major agriculture-producing provinces, Sichuan is 
the only one that experienced negative TFP growth in 1978–2010, which may be due in part to the lack of 
rural infrastructure and unfavorable agricultural policies. Only 25 percent of the crop sown area is 
irrigated in Sichuan, far below the average of 40 percent. Sichuan also has a long history of high 
agricultural taxes, discouraging investment in the agricultural sector. 
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6.  CONCLUSION 

The paper uses an output-oriented parametric approach to extend the decomposition of the Malmquist 
productivity index suggested by Balk (2001) and Färe et al. (1997). The Malmquist index is decomposed 
into several assembling components, which allows us to examine the ray expansion of technology, input- 
and output-induced shifts of the technology frontier, technical change, scale efficiency change, and 
productivity change caused by the output mix. A translog output distance function is chosen to represent 
the production technology. A computable form of each component of the Malmquist index is expressed as 
a function of parameters estimable in the output distance function, and the Malmquist index is derived 
from those components. 

The advantage of the parametric approach is the flexibility to statistically test hypotheses 
regarding the different components of the Malmquist index, the nature and the bias of the production 
technology, returns to scale, and the functional form by imposing restrictions on parameters. In addition, 
this paper differs from other studies by expressing results in a discrete-changes format, instead of 
derivatives. This is useful in empirical studies because most economic variables are not presented as 
continuous, and the estimated productivity growth index using first order derivatives can lead to incorrect 
results (Coelli, Rao, and Battese 1998; Pantzios, Karagianis, and Tzouvelekas 2011). 

This paper presents an empirical study of TFP change in Chinese agriculture during the post-
reform period of 1978–2010. The level of technical efficiency averages 0.884, with low efficiency scores 
in the north. The recent drop in technical efficiency is a reason for concern, suggesting insufficient rural 
infrastructure and a lack of supportive policies. On average, productivity grows at 2 percent per year—
mostly driven by technical change. Additionally, the result of the decomposition of the technical change 
indicates that it is technology neutral despite the output mix moving closer to the technical optimal. Scale 
efficiency marginally contributes to productivity growth, whereas the output-mix effect is smaller. The 
findings have clear policy implications regarding improving agricultural performance in China. For 
example, past agricultural policies have failed to address China’s huge efficiency gap so as to decrease 
wasteful use of agricultural inputs and cut down on environmental costs. Whether productivity can be 
improved through a shift in current technology is another relevant issue worth exploring. Additionally, 
given the considerable spatial variation, agricultural development policies need to be tailored to local 
conditions during planning and implementation. An important issue not discussed in this paper is future 
sources of productivity growth, including investment in agricultural research, rural education, and water. 
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APPENDIX: SUPPLEMENTARY TABLES 

Table A.1—Malmquist productivity index and its components by province 

Region Province TC TCM OB IB TE EC SEC OME TFP 

North 

Beijing 1.016 1.017 1.000 1.000 0.638 1.022 1.003 1.001 1.044 
Hebei 1.021 1.022 1.000 1.000 1.000 1.000 1.000 1.000 1.021 
Inner 
Mongolia 1.042 1.043 1.000 1.000 0.830 1.005 1.003 1.000 1.051 

Shanxi 1.029 1.030 1.000 1.000 1.000 1.000 1.000 1.000 1.029 
Tianjin 1.023 1.024 1.000 1.000 1.000 1.000 0.994 1.001 1.018 

Northeast 
Heilongjiang 1.047 1.048 1.000 1.000 1.000 1.000 1.003 0.999 1.049 
Jilin 1.032 1.033 1.000 1.000 0.678 1.007 1.003 0.999 1.041 
Liaoning 1.025 1.026 1.000 1.000 0.608 0.982 1.000 1.000 1.006 

Central 

Anhui 1.024 1.025 1.000 1.000 0.915 1.004 1.000 1.000 1.027 
Fujian 1.024 1.025 1.000 1.000 0.933 0.995 1.000 1.000 1.019 
Jiangsu 1.017 1.018 1.000 1.000 0.914 1.001 1.000 1.000 1.017 
Jiangxi 1.030 1.032 1.000 1.000 0.920 0.991 1.000 1.001 1.022 
Shandong 1.020 1.021 1.000 1.000 0.936 0.999 1.000 1.000 1.019 
Shanghai 1.010 1.011 1.000 1.000 1.000 1.000 1.001 1.001 1.012 
Zhejiang 1.019 1.020 1.000 1.000 0.937 1.000 1.001 1.001 1.021 

South 

Guangdong 1.014 1.015 1.000 1.000 0.869 0.998 1.000 1.000 1.012 
Guangxi 1.022 1.024 1.000 1.000 0.916 0.995 0.999 1.000 1.016 
Hainan 1.038 1.039 1.000 1.000 0.600 0.985 1.000 1.000 1.022 
Henan 1.019 1.020 1.000 1.000 1.000 1.000 1.002 1.000 1.021 
Hubei 1.023 1.025 1.000 1.000 0.859 1.005 1.000 1.000 1.029 
Hunan 1.022 1.023 1.000 1.000 0.778 0.982 1.000 1.000 1.003 

Southwest 

Chongqing 1.017 1.018 1.000 1.000 0.983 1.000 0.999 1.000 1.017 
Guizhou 1.020 1.021 1.000 1.000 1.000 1.000 1.000 1.000 1.020 
Sichuan 1.013 1.015 1.000 1.000 0.763 0.986 1.000 1.000 0.999 
Xizang 1.018 1.019 1.000 1.000 1.000 1.000 0.994 0.999 1.011 
Yunnan 1.025 1.027 1.000 1.000 0.870 0.999 0.999 1.000 1.024 

West 

Gansu 1.029 1.031 1.000 1.000 0.972 1.000 1.000 1.001 1.030 
Ningxia 1.038 1.039 1.000 1.000 1.000 1.000 1.000 1.000 1.038 
Qinghai 1.022 1.023 1.000 1.000 0.916 0.999 1.000 0.998 1.018 
Shaanxi 1.024 1.025 1.000 1.000 0.930 0.987 1.002 1.000 1.013 
Xinjiang 1.041 1.042 1.000 1.000 0.629 1.009 1.007 1.000 1.057 

North  1.026 1.028 1.000 1.000 0.938 1.003 1.001 1.000 1.030 
Northeast  1.034 1.035 1.000 1.000 0.757 0.994 1.002 0.999 1.029 
Central  1.021 1.022 1.000 1.000 0.928 0.999 1.000 1.000 1.020 
South  1.020 1.022 1.000 1.000 0.882 0.996 1.000 1.000 1.016 
Southwest  1.017 1.019 1.000 1.000 0.850 0.993 1.000 1.000 1.010 
West  1.031 1.033 1.000 1.000 0.842 0.999 1.003 1.000 1.033 
China   1.023 1.024 1.000 1.000 0.884 0.997 1.001 1.000 1.020 

Source:  Authors’ calculation. 
Note:  TC = technical change; TCM = technical change magnitude; OB = output bias; IB = input bias; TE = technical 

efficiency; EC = technical efficiency change; SEC = scale efficiency change; OME = output-mix effect; TFP = total 
factor productivity. 
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Table A.2—Malmquist productivity index and its components by year 

Year TC TCM OB IB TE EC SEC OME TFP 
1978 1.008 1.009 1.000 0.999 0.892 0.989 0.998 1.000 0.995 
1979 1.007 1.008 1.000 0.999 0.882 1.033 1.000 1.000 1.040 
1980 1.008 1.008 1.000 1.000 0.904 0.987 1.002 1.000 0.996 
1981 1.008 1.009 1.000 0.999 0.890 0.987 0.999 0.999 0.994 
1982 1.009 1.009 1.000 0.999 0.877 0.988 1.001 1.001 0.998 
1983 1.010 1.010 1.000 1.000 0.866 0.970 1.002 0.999 0.981 
1984 1.011 1.011 0.999 1.000 0.841 1.026 1.000 0.999 1.036 
1985 1.011 1.011 1.000 1.000 0.859 1.009 0.999 1.000 1.019 
1986 1.012 1.012 1.000 1.000 0.864 0.994 0.999 1.000 1.006 
1987 1.011 1.013 0.999 1.000 0.859 1.008 0.999 1.000 1.018 
1988 1.011 1.012 1.000 1.000 0.863 1.051 1.000 1.000 1.062 
1989 1.012 1.012 1.000 1.000 0.901 0.973 1.001 1.000 0.985 
1990 1.013 1.014 1.000 1.000 0.874 1.021 1.001 1.000 1.035 
1991 1.014 1.015 1.000 1.000 0.890 1.015 1.001 1.000 1.031 
1992 1.015 1.016 1.000 1.000 0.902 1.009 1.002 1.000 1.027 
1993 1.015 1.016 0.999 1.000 0.910 0.985 1.001 1.001 1.002 
1994 1.016 1.016 1.000 1.000 0.896 1.008 1.001 1.000 1.026 
1995 1.017 1.017 1.000 1.000 0.904 1.006 1.001 1.000 1.025 
1996 1.019 1.019 1.000 1.000 0.908 1.007 1.001 0.999 1.026 
1997 1.020 1.020 1.000 1.000 0.914 0.996 1.000 1.000 1.016 
1998 1.022 1.022 1.000 1.000 0.909 1.008 0.999 1.000 1.028 
1999 1.023 1.023 1.000 1.000 0.913 1.009 1.000 1.000 1.032 
2000 1.024 1.024 1.000 1.000 0.920 1.000 1.001 1.000 1.024 
2001 1.025 1.025 1.000 1.000 0.919 1.000 1.001 1.000 1.026 
2002 1.026 1.027 1.000 1.000 0.919 0.998 1.001 1.001 1.026 
2003 1.027 1.028 0.999 1.000 0.916 0.974 1.001 1.000 1.001 
2004 1.028 1.028 1.000 1.000 0.894 0.991 1.001 1.000 1.020 
2005 1.030 1.029 1.000 1.000 0.886 0.999 1.001 1.000 1.030 
2006 1.031 1.032 1.000 1.000 0.885 0.975 1.002 0.999 1.006 
2007 1.032 1.032 1.000 1.000 0.862 0.978 1.001 1.000 1.010 
2008 1.034 1.033 1.001 1.000 0.844 1.006 1.001 1.000 1.041 
2009 1.036 1.036 1.000 1.000 0.851 0.984 1.001 1.001 1.022 
1978–83 1.008 1.009 1.000 0.999 0.884 0.991 1.000 1.000 0.999 
1984–89 1.011 1.012 1.000 1.000 0.865 1.010 1.000 1.000 1.021 
1990–93 1.015 1.015 1.000 1.000 0.894 1.007 1.001 1.000 1.023 
1994–97 1.018 1.018 1.000 1.000 0.906 1.004 1.001 1.000 1.023 
1998–2003 1.025 1.025 1.000 1.000 0.916 0.998 1.000 1.000 1.022 
2004–10 1.032 1.033 1.000 1.000 0.863 0.989 1.001 1.000 1.022 
1978–2010 1.023 1.024 1.000 1.000 0.884 0.997 1.001 1.000 1.020 

Source:  Authors’ calculation. 
Note:  TC = technical change; TCM = technical change magnitude; OB = output bias; IB = input bias; TE = technical 

efficiency; EC = technical efficiency change; SEC = scale efficiency change; OME = output-mix effect; TFP = total 
factor productivity. 
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