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ABSTRACT

Inspired by the wide adoption of rigorous randomized controlled trials (RCTs) in medical research,
economists and other social scientists have increasingly used RCTs in their research. As researchers pick
up projects amenable to the RCT methodology, they likely leave out important questions to which RCTs
cannot be directly applied. As a result, RCTs have been criticized for the proclivity of addressing trivial
questions. As a matter of fact, in medical research RCTs are an integral part of adaptive sequential
experiment design—a few steps must be taken to screen out drugs that have toxins and strong side effects
before running any RCTs on humans. In this paper, we argue that economists can learn a great deal from
the design principles implemented in medical research. We develop a theoretical model to show the logic
of adaptive sequential experiment design in the presence of uncertainty over negative effects and discuss
how to choose samples in a population to minimize the experiment cost. We also point out the applications
of our proposed framework in the economic domain, such as economic reforms and new product design.
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1. INTRODUCTION

It has been increasingly recognized that evidence-based research plays an important role in policymaking
(Ravallion 2009). However, there is considerable debate as to what constitutes good evidence. Inspired by
the wide adoption of rigorous randomized controlled trials (RCTs) in various science fields, in the past
couple of decades the application of RCTs in economic research has blossomed. To a significant extent,
RCTs have revitalized the way of conducting empirical research in economics (Duflo, Glennerster, and
Kremer 2008). Evidence based on RCTs is even regarded as the “gold standard”(Banerjee 2008).
However, as the adoption of RCTs spreads, some of their flaws have been also exposed. For example, a
lack of external validity (results found in one context may not be applicable elsewhere) has been voiced as
a major concern (Ravallion 2009; Deaton 2010; Rodrik 2009). In reality, issues of general equilibrium and
political economics pose challenges for external validity (Acemoglu 2010). Without demonstrating
external validity, it would be difficult to scale up successful experiments shown in RCTs. Some other
weaknesses have also been mentioned in the literature, including but not limited to failing to capture
general equilibrium effects, neglect of heterogeneity, the nonrandomness of selecting projects for RCTs,
and ethical constraints (Barrett and Carter 2010; Deaton 2010; Ravallion 2012).

In any scientific field, “no harm” to the experiment subjects is a key principle for the application of
RCTs. For example, in medicine field drugs with a toxin are not allowed in human clinical trials. Testing
for toxins is an integral part of drug development and must be conducted prior to human clinical trials.
Economists have implicitly followed the same principle. They normally select RCT projects, such as bed
nets in Africa, that are known to have no major deleterious effect on the survey subjects (Cohen and Dupas
2010). Of course, many economists have implicitly screened their RCT projects through field observations
or qualitative investigations, but unlike scientists writing in the medical literature, they rarely explicitly
discuss the initial screening steps.1Because of the strong bias in favor of publishing papers based on RCTs,
researchers tend to select those projects that are suitable for RCTs, that is, posing no obvious harm to the
survey subjects. Consequently, many of the chosen projects tend to focus on “small questions” that may
not always be of interest to policymakers (Rodrik 2009; Lin 2011; Ravallion 2012).

We fully recognize the merits of using RCTs in economics research. However, as shown in the
medical literature that our economists aim to emulate, RCTs are just one integral part of sequential
experiment design.2 For example, drug development encompasses several steps—pathological analysis,
toxin testing, animal trials, and clinical trials on humans. Even for human trials, many drugs initially are
tested only on terminally ill patients. Only those drugs that have been shown to have no harmful effects on
humans are allowed into RCTs on human beings. In other words, RCTs are just one step of the scientific
discovery process. If the focus is only on the RCT and ignores other necessary steps in experiment design,
our profession would likely run the risk of spending limited resources on relatively trivial questions that
can be safely randomized, at the expense of more important and policy-relevant questions (Rodrik 2009).

For many proposed economic policies, policymakers face considerable economic and political
uncertainty. When facing choices never seen before, it is extremely risky for agents to make radical
decisions before seeing solid evidence. Learning by experimentation is a key strategy to uncover the actual
payoffs and costs associated with proposed changes. In reality, experimentation does not necessarily start
with RCTs from the very beginning because of the uncertainty over potential failures and resultant
negative spillover effects. Furthermore, RCTs measure the average effect on the treatment groups
compared with the control group, ignoring heterogeneity and the distributional effect (Deaton 2010), while
policymakers, apprehensive of compromising stability, are much more concerned about potential adverse
distributional effect for some segment of the population (Kanbur 2001). Instead of solely using a RCT,

1As a matter of fact, Banerjee and Duflo, two of the most influential advocates of applying RCTs in economics research, rely
heavily on observations and field interviews to identify RCT projects, as narrated in their book, Poor Economics (Banerjee and
Duflo 2011). However, these rich stories vanish in the published economics papers.

2There is also strong debate as to what constitutes the best evidence in medicine (Worrall 2007). No matter whether RCTs are
used or not, no harm is a general principle underlying experiment designs in medicine.
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therefore, it is more sensible for policymakers to adopt a sequential experiment design approach, following
the example of medical literature.

Our paper is also related to the extensive literature on experimentation in the areas of transition
economics and fiscal federalism. When there is significant uncertainty about the benefits and costs of a
proposed policy reform, small-scale incremental experimentation has been shown to be an effective way to
reveal information and potentially convince skeptics to adopt the reform measures, especially in
economies with an M-form organizational structure (many similar, self-contained, sublevel governments)
(Qian, Roland, and Xu 2006). Experimentation is also a key feature of fiscal federalism. Fiscal
decentralization enables interjurisdictional competition, which induces local governments to experiment
with new policies on a small scale. The information generated from the experiments brings about a great
deal of externality (Oates 1999; Besley and Case 1995). In contrast, the spillover effect is normally not
taken into account in RCTs (Ravallion 2012).

In this paper, we first elaborate the idea of adaptive sequential experiment design using three
concrete examples—drug development, China’s economic reforms, and industrial product design. Next,
we develop a conceptual model to demonstrate the logic of adaptive sequential experiments. The paper
ends with conclusions.
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2. APPLICATIONS OF ADAPTIVE SEQUENTIAL EXPERIMENTATION

Drug Development

In the United States, drug regulations have evolved largely in response to crises. One milestone is the
accidental deaths of 107 people in 1939 from taking the medicine “Elixir sulfanilamide” (Routledge 1998).
At the time, drug manufacturers were not required to conduct toxicity testing. A well-intentioned chemist
mixed diethylene glycol with sulfanilamide to make a liquid formulation, unaware of the adverse effects of
diethylene glycol. In responding to the fatalities, Congress enacted the Federal Food, Drug, and Cosmetic
Act of 1938, empowering the US Food and Drug Administration (FDA) to regulate and oversee the
process of developing drugs. One key objective of the FDA is to ensure drug safety and prevent similar
incidents from happening again.

Under the current FDA regulations, drug development encompasses two main steps—the
preclinical phase and the clinical phase (Lipsky and Sharp 2001). In the preclinical phase, the first task is
to identify a promising new chemical entity (called the candidate compound) based on scientific advances
in understanding a disease. The next step is to undertake toxicology and safety studies for the identified
compound using experimental animals prior to use in humans. For most drug candidates, the FDA requires
tests on at least two laboratory animal species, rodent (rat or mouse) and nonrodent (rabbit, dog, or
monkey), to identify the observable signs of toxicity and determine safe dose levels. Even the animal tests
follow a step-by-step approach: “The group sizes for the early range-finding studies may consist of only a
few animals and one sex (one animal per dose level). Once a suitable dose range is identified, group sizes
are increased to at least three per sex per dose level to allow statistical comparison” (Steinmetz and Spack
2009, 5).

After the compound passes the toxin test on animals, researchers can gather the preclinical testing
information and submit an investigational new drug (IND) application to regulatory authorities (the FDA
in the United States). If the application is approved, drug development can move to the clinical phase. On
average, only about four percent of the compounds tested on animals qualify for human tests (Stratmann
2010).

The clinical phase is further divided into three or four subphases. Phase I tests human toleration
limits and safe dose levels, normally based on use in a small group of healthy volunteers (Friedman,
Furberg, and DeMets 2010). Testing follows a cautious procedure, starting with very low doses, which are
gradually increased, as described by Friedman, Furberg, and DeMets: “In estimating the maximally
tolerate dose, the investigator usually starts with a very low dose and escalates the dose until a prespecified
level of toxicity is obtained. Typically, a small number of participants, usually three, are entered
sequentially at a particular dose. If no specified level of toxicity is observed, the next predefined higher
dose level is used. If unacceptable toxicity is observed in any of the three participants, an additional
number of participants, usually three, are treated at the same dose. If an additional unacceptable toxicity is
observed, then the dose escalation is terminated and that dose, or perhaps the previous dose, is declared to
be the maximally tolerated dose” (2010, 5). Typically, two-thirds of tested compounds are safe enough to
enter the next phase (Lipsky and Sharp 2001).

Phase II determines a drug’s efficacy and measures its side effects. To avoid potential unknown
harmful effects on a healthy population, this phase tends to recruit a small group of patients (such as
terminally ill cancer patients) that the drug is intended to treat. Within Phase II, a two-stage design is
frequently practiced (Friedman, Furberg, and DeMets 2010). In the first step, investigators aim to
eliminate drugs that have a harmful effect or show little or no biologic activity. For example, if the toxin
level exceeds a certain prespecified threshold or the drug does not show any activity in more than a certain
predefined proportion of participants, the experiment will be stopped. Otherwise, more participants will be
added to obtain a better estimate of the response rate in the second stage. It takes about four to five years to
finish Phase II testing. In the process, some drugs are weeded out because of ineffectiveness or
unacceptable side effects. In the end, only about one-third of INDs survive this phase.
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Phase III is the step to demonstrate effectiveness, determine the best dosage, and further check
safety. The FDA requires randomized controlled trials (RCTs) on a larger human population in this phase.
This step is more time consuming than the first two clinical phases, normally lasting six to eight years. On
average, only about 27 percent of INDs eventually pass this stage and receive FDA approval (Lipsky and
Sharp 2001).

Drugs frequently pass the first two phases of clinical trials but falter at the third stage
(FierceBiotech 2012; Arrowsmith 2011). One example of third-phase failure is the case of Dimebon, an
Alzheimer drug that was originally developed as an antihistamine. Initial tests were conducted using
laboratory rats and, later, a pilot study of 14 Alzheimer’s patients. Positive results from these initial trials
were published and received attention from both researchers and investors. However, because most of the
third-phase trials showed no significant differences between treatment and control groups, the major
investor, Pfizer, pulled out and declared the experiments a failure (Carroll 2012).

Even well-designed RCTs still have the potential for flaws. For example, the human subjects used
in the drug tests may be different from the general population in the real world. There is also the
possibility that the effectiveness shown in Phase III cannot be externally validated in practice. In addition,
some drugs could have long-term side effects, which are not necessarily discoverable in Phase III testing.
The FDA uses two methods to remedy these problems. First, sometimes the FDA requests that a sponsor
conduct a Phase IV test on a different population so as to verify the validity externally. Second, the FDA
has set up a hotline (1-800-FDA-1088) to keep track of serious adverse reactions related to the use of new
drugs even after they are approved and released. Drug manufacturers are required to report side effects
every quarter for three years after a drug is approved.

It is worth mentioning that if safety is a concern, both Phase I and Phase II can be based on a small
number of subjects and need not be randomized and controlled (Karlberg and Speers 2010). The drugs
tested in clinical Phase III are largely known to pose no major harms after passing the scrutiny of the first
two clinical phases. As a result, RCTs can be run on a larger population in Phase III (and Phase IV if
called for).

Looking at the whole drug development process, it is clear that the FDA follows the principle of
“safety first”. RCTs are just one of the several approaches used in drug development. Friedman, Furberg,
and DeMets summarized the basic requirement for conducting RCTs in the following paragraph: “Before
conducting a trial, an investigator needs to have the necessary knowledge and tools. He must know
something about the safety of the intervention and what outcomes to assess and have the techniques to do
so. Well-run clinical trials of adequate magnitude are costly and should be done only when preliminary
evidence of the efficacy of an intervention looks promising enough to warrant the effort and expense
involved” (2010, 11).

China’s Economic Reforms

Pragmatism, trial and error, evidence-based policymaking, and experimentation with small-scale policy
reforms that are later scaled up are all defining features of China’s reforms in the past several decades. The
course of China’s rural reform clearly illustrates this point. At the end of the Cultural Revolution
(1966-1976), China faced serious food shortages, largely due to the collective farming system featured in
the era of the planned economy. To avert potential food shortages, in 1978 Xiaogang Village in Anhui
Province contracted collective land to farmers, considerably boosting crop yields and farmers’ income.
After hearing about this success, researchers at the Research Center for Rural Development (RCRD) at the
state council paid a visit to the village, evaluated the practice, and proposed to scale it up nationwide.

However, when they first proposed the household responsibility system (HRS) reform based on the
Anhui experience at a conference with seven major agricultural provinces (including Anhui Province)
organized by the National Agricultural Commission, five out of the seven provinces opposed it. At the
time, public ownership had been in place for more than two decades, and many policymakers were used to
the order of the collective farming system and concerned about the potential chaos stemming from this
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reform. More importantly, the HRS seemed to forsake the socialist principles embedded in the minds of
most officials.

Facing the impossibility of accomplishing the reform in one fell swoop, Du Runsheng, the head of
RCRD, came up with an ingenious idea and submitted it to Deng Xiaoping, China’s supreme leader at the
time. Du proposed to conduct a trial of HRS in a few impoverished mountainous regions, based on the fact
that these regions were already facing a shortfall of food grains and posed a heavy burden on the state;
hence, if the trials failed, the impact would be confined to these limited regions. After hearing the
proposal, Deng made the following remarks: “Hardship regions are allowed to carry out the HRS. If it
turns out to be mistaken and they come back in, it is nothing special. Rich regions that have enough to eat
do not need to start right away” (Du 2010, 18).

Following Deng’s instructions, different forms of the agricultural production responsibility system
were allowed as experiments in different regions. Impoverished areas carried out the full HRS; developed
coastal regions could keep the collective production modes but with specialized contracts linking wages to
output. Intermediate regions could freely choose. After one year the test results came out, overwhelmingly
showing that the HRS was more effective than other responsibility systems. The impoverished areas
running the trials had enough food to eat and no longer relied on the central government for food grain
subsidies. The compelling evidence easily convinced most decisionmakers in the government, and the
HRS was fully rolled out nationwide just a few years later during the 1980s. The success of the rural
reform laid a foundation for subsequent rapid economic growth and the most massive poverty reduction in
human history (Lin 1992).

Not only has the rural reform followed a step-by-step experimental approach, but other major
economic reforms in China have followed suit. The creation of the Shenzhen Special Economic Zone is
another telling example. Shenzhen was a very small town by the border between Hong Kong and mainland
China with a population of 30,000 people in the late 1970s. In 1979, Yuan Geng, director of the China
Investment Promotion Bureau in Hong Kong, proposed to setting up a special industrial zone in the
Shekou area of Shenzhen as a pilot for market reforms, taking advantage of the proximity to Hong Kong.
The state council quickly approved the proposal, earmarking 2.14 square kilometers for the zone and
granting it special rights to test the applicability of the market economy in the zone. The industrial zone
turned out to be an instant success. The investment from Hong Kong quickly filled in the limited land,
generating hundreds of thousands of jobs.

After observing this success, in 1980 the central government established a larger Shenzhen Special
Economic Zone, which encompasses 1,953 square kilometers, to carry out full-fledged market reforms on
a larger scale. This is the first citywide special economic zone in China. For fear of any negative spillover
to other regions, all the reforms were confined to the special economic zone. Initially even Chinese
citizens had to apply for a special travel document to enter Shenzhen. In 1980, Shenzhen’s gross domestic
product (GDP) was only 0.3 percent of that in Hong Kong. Due to the special policy of opening up and
reform, its GDP is now nearing 70 percent of Hong Kong’s and is projected to surpass that of Hong Kong
in 10 years. At this time, Shenzhen boasts being one of the richest cities in China with a population of
more than 13 million. The Shenzhen experience illustrates that capitalism is not as dangerous as was
taught during the era of the planned economy, effectively erasing the ideological taboo about capitalism.

Following the success of Shenzhen, 3 additional city-level special economic zones (Zhuhai,
Shantou, and Gongbei) were established in the next few years. In 1984 China further opened up 14 more
coastal cities (Tianjin, Shanghai, Dalian, Qinhuangdao, Yantai, Qingdao, Lianyungang, Nantong, Ningbo,
Wenzhou, Fuzhou, Guangzhou, Zhanjiang, and Beihai). Although these “opened-up” cities did not enjoy
the full privileges of special economic zones, they still received considerable discretionary powers in
attracting foreign direct investment and exploring market reforms. In 1990, the central government
designated Shanghai Pudong as a special economic and technological development zone, allowing it to
conduct various economic reforms. In 2005, Pudong was further classified as a pilot area for integrated
reforms (beyond just economic reforms). The development process of special zones illustrates the
step-by-step experimental approach commonly seen in Chinese reforms.
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Experiments yield information to help policymakers understand what works and what does not.
Thus, even failures can be helpful because they can lead to the elimination of unfavorable options. Still, a
large-scale mistake may be irreversible and therefore may undermine the credibility and stability of the
political leadership, thus weakening overall learning capacity. The invention of the dual-track price reform
(allowing state-owned enterprises to sell their unused quota of raw materials to town and village
enterprises at market prices) provides a good example on this point.3 After the success of rural reform,
price reform became more urgent. There were two schools of thought regarding price reform. One school
was in favor of a big-bang type of price reform, instantly liberalizing planned prices to market prices.
Another school proposed to improve the determination of prices through better planning. Facing
uncertainty, the RCRD sent a few young researchers to conduct a pilot on radical price reform in Hebei
Province. Luo Xiaopeng was one of the researchers sent to the field. However, the experiment of course
was purposely not made known to the outside at the time. Luo (2010) later reported that the failure of this
laissez-faire price reform experiment helped him come up with the idea of dual-track price reform.

Such experimentation has been particularly important in overcoming several major obstacles to
effective reform in China, related to its size, its diversity, and the history and hierarchical structure of its
political system. For a large and diverse economy like China’s, it is very difficult to derive a single
one-size-fits-all blueprint for reform simply by applying textbook economic theories. Instead,
trial-and-error processes can help researchers discover local best practices. Moreover, the basis for
formulating sound market-oriented policies in 1978 was limited. Few bureaucrats had any formal training
in orthodox economics, nor even substantial experience of living in a market economy. Chinese reformers
therefore felt compelled to use experimentation as a collective learning mechanism.

In fact, the decentralized experiment of “proceeding from point to surface” (you dian dao mian) is
a pervasive feature in China’s economic transformation, dating back even to the Chinese Communist
revolutionary era (Heilmann 2008).

Industrial Product Design

Similar to policy experimentation, strategic experiments in business allow companies to test business
decisions, including adding new products or altering existing products, before full-scale implementation.
A step-by-step, trial-and-error approach allows for more frequent updating of prior assumptions to align
with current results. Imperfect information and fear of potential failures motivate the need for a
trial-and-error approach to learning in business (Govindarajan and Trimble 2004). Experiments allow
companies to test consumer preference, competitors’ reactions, profitability, and feasibility of full-scale
implementation (Anthony 2009). The goal of these experiments is to provide a low-cost method of testing
these elements, thereby reducing risks associated with full-scale implementation. For practical reasons,
strategic experimentation in business does not follow a strict RCT-type experimental approach
(Govindarajan and Trimble 2004).

One example of innovative product design is the case of Proctor & Gambles development of
Align, an over-the-counter supplement that had the potential to treat irritable bowel syndrome (IBS), a
condition that restricts a person’s food choices and behavior patterns (Anthony 2010). Although the
product showed great promise, the corporate leadership was concerned about several potential risks. First,
although IBS was a relatively common condition, no current market existed for the new product. Second,
developing a new brand is expensive. Third, the projected returns seemed to be so small as to make those
among the leadership skeptical about embracing this new product.

To uncover the potential payoffs and risks of this new product, the company engaged in a series of
low-cost, information-rich experiments. After initial analysis to develop assumptions on which a full-scale
launch would rely, pilot tests were conducted. In the pilot, Internet marketing strategies were used to
gauge customer responses and refine product and marketing design. One positive result of these tests was
the manner in which the product was ultimately sold. Instead of being packaged in a generic bottle, the

3See Lau, Qian and Roland (2000) for details about the logic of dual-track reform in China.

6



pills were packaged individually, much like chewing gum, and had markings that corresponded to days of
the week, offering customers a helpful way to remember to take the medicine. Based on these
experimental steps, Align was launched nationally and shows promise of success.

Thomke (2003) described one example that highlights the role of sequential experimentation in
product development, the case of design changes in Bank of America branches. Because of the bank’s
extremely large volume of transactions every day, senior management was very concerned about the
negative impact on customers of potential glitches associated with national rollouts of untested
systemwide new designs of branches. To reduce the risk of large-scale failure, Bank of America used an
experimental, step-by-step approach, beginning collecting ideas from employees at various levels about
how to innovate the service experience. The goal in this step was to collect as many as ideas as possible.
Only a small number of ideas were selected for experimentation.

Next, after choosing the best ideas for experimentation, the bank set up a “prototype center” in
Charlotte, North Carolina, designed to mimic a real branch. Some staff members were invited to rehearse
as customers, interacting with actual bank hosts in the newly designed environment. The purpose of the
rehearsal in the prototype center was to filter ideas.

After an idea passed the rehearsal process, the bank launched it as an experiment in some of the 25
innovative market branches (the bank’s “living laboratory”) in Atlanta. The experiments normally ran for
90 days. However, if customers liked an idea, the experiment might become permanent practice in the
branch after the trial period. For example, in one experiment, the research team used two approaches to
reducing noise in a branch. First, they frequently ran an experiment in multiple branches to average out
individual noises. Second, the team compared the performance between the experimental branches and
similar branches running under normal conditions in the same city.

Based on the results of the test, the final step produced recommendations for scaled-up concept
implementation. This kind of experimental approach is used not only in the financial sector but also in
many other sectors, such as automobile and yacht design, as described by Thomke (2003). Because it is
too costly to build a new prototype car for crash tests or a yacht for tank and tunnel tests, companies have
adopted a sequential experimental approach to reduce the cost. Computer-aided design (CAD) is widely
used to simulate the inner workings and safety of a new product. After the CAD stage, a scaled-down
prototype is often built for real tests (crash tests for cars, tank and tunnel tests for yachts). A full-size
prototype won’t be built until the small-scale prototype passes the necessary tests. Through this process,
bad ideas can be identified and ruled out earlier, avoiding larger, more wasteful mistakes in the later stage.

In short, this kind of small-scale, sequential experimental process provides innovative
recommendations for implementation on a large scale at a minimum of cost and risk to current business
practices.
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3. ADAPTIVE DESIGN IN SEQUENTIAL EXPERIMENTS

The Logic of Sequential Decision Theory

The spirit of sequential experimentation is embedded in human nature and dates back to thousands of years
ago. “Perhaps the earliest proponent was Noah, who on successive days released a dove from the Ark in
order to test for the presence of dry land during the subsidence of the Flood” (Jennison and Turnbull 2000,
4). This spirit was first conceptualized by statisticians during 1920s and 1930s to tackle various sequential
decisionmaking problems, such as sequential sampling inspection procedures (Dodge and Romig 1929);
quality control charts (Shewhart 1931); two-stage experiment design (Thompson 1933); and multistep,
large-scale survey sampling (Maha 1940).

In response to the need for efficient testing of antiaircraft gunnery during the World War II,
Abraham Wald, the founder of sequential analysis, and his collaborators developed the sequential
probability ratio test (SPRT) in 1943, which reduces the number of samples without sacrificing the
reliability of the terminal decisions (Wald 1947). Let X1,X2, . . . be independent and identically distributed
observations successively sampled from a common distribution Pθ or density function fθ (x), where θ is an
element of the parameter space Θ and can be considered as the state of nature governing the outcome of a
process. To test the null hypothesis, H0 : θ = θ0, versus the alternative, H1 : θ = θ1 (θ1 6= θ0), the SPRT
stops sampling at stage

T = inf{t ≥ 1 : Rt ≥ a or Rt ≤ b}, (1)

where Rt = ∏
t
i=1
[

fθ1(Xi)/ fθ0(Xi)
]

is the likelihood ratio, and (b,a) are stopping boundaries
(a > 1 > b > 0). When Rn goes beyond the stopping boundaries, stopping occurs and H0 (or H1) is
accepted if Rt ≤ b (or Rt ≥ a). If Rt ∈ (a,b), the sampling procedure should be continued by observing
Xt+1. The choice of a and b are determined by the error probabilities α = Prob(RT ≥ a|H0 is true) and
β = Prob(RT ≤ b|H1 is true). Wald and Wolfowitz (1948) showed that the SPRT minimizes the
expectations of T under both H0 and H1 among all tests in which the number of samples has a finite
expectation under H0 and H1 and whose error probabilities satisfy

Prob(Reject H0|H0 is true)≤ α (2)

and

Prob(Reject H1|H1 is true)≤ β . (3)

The optimality of the SPRT is actually closely related to the discussion on optimal solutions of
sequential decisionmaking problems in Arrow, Blackwell, and Girshick (1949). In this discussion, an
experimenter observes a sequence of random variables X1,X2, . . . from the distribution Pθ , when θ is the
true parameter or the state of nature, and is required to choose some action a from an action space A
consisting of all available actions to be chosen. He also incurs a loss function L(θ ,a), representing the loss
L(θ ,a) when θ is the parameter value and action a is chosen. However, he doesn’t need to choose an
action immediately. Instead, he may decide to select a subset of sequence {Xi} to obtain partial
information about θ so that a wiser selection of action can be made. Let Xt = (X1, . . . ,Xt). A sequential
procedure T ∈T is a sequence of disjunct sets X0,X1,X2, . . .Xt , . . . , where Xt = {Xt} represents the
sampling procedure that terminates with the observation Xt . By the definition of the sequential procedure,
we require that ∑

∞
t=0 Prob(Xt) = 1. Let at(Xt) denote an action function of observing X1, . . . ,Xt . A

sequential decision rule dt is a function dt : Xt −→A takes action dn(Xt) when Xt is observed.4

We shall notice that a loss L
[
θ ,dt(Xt)

]
is incurred when the sampling procedure T ∈T stops at

stage t and Xt is observed. Then given a prior distribution π(θ) on the parameter space Θ, the average loss
of choosing decision dt for the observed sample Xt over the parameter space Θ is

4The statistical specification here follows the Bayesian setting described by Arrow, Blackwell, and Girshick (1949).
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E
{

L
[
θ ,dt(Xt)

]∣∣Xt
}
=
∫

L
[
θ ,dt(Xt)

]
π(θ)dθ . (4)

Then for the entire sampling procedure T and the sequence of decision rules d = {dt}, the total cost is

given by

R(T,d) =
∞

∑
t=0

∫
Xt

[
E
{

L
[
θ ,dt(Xt)

]∣∣Xt
}
+ ct(Xt)

]
dProb(Xt), (5)

in which ct(Xt) is the cost of the sampling procedure stopped at stage t. Arrow, Blackwell, and Girshick

(1949) showed that for all sampling procedures T ∈T , there exists a fixed sequence of decision rules
dm = {dm

t ; t = 0,1,2, . . .} such that the minimum of the total cost R(T,d) can be attained, that is,

R(T,dm)−→ w(T ) := inf
d

R(T,d), for all T ∈T . (6)

They further showed that the optimal sampling procedure can be constructed and an associated sequence
of decision rules can be found; hence the total cost w(T ) can be minimized.

Arrow, Blackwell, and Girshick (1949) showed that SPRT provides an optimal stopping rule from
the perspective of making sequential decisions. Specifically, for the two hypotheses H0 and H1, let wi j be
the nonnegative loss incurred in accepting the hypothesis H j when Hi is in fact true, and assume that θ can
take on θ0 and θ1 with prior distribution π and 1−π , respectively, where 0 < π < 1. Then the stopping
rule of SPRT conFceived by Wald and Wolfowitz (1948) is equivalent to the sampling procedure suggested
by Arrow, Blackwell, and Girshick (1949). The SPRT marks the birth of sequential analysis (Ghosh 1991)
and has motivated many important developments and breakthroughs in sequential analysis in the last
several decades; see Siegmund (1985), Sen and Ghosh (1991), and Lai (2001) for general reviews of the
subject.

Adaptive Sequential Methods in Experiment Design

Note that the conclusions drawn by Wald and Wolfowitz (1948) and Arrow, Blackwell, and Girshick
(1949) suggest that under certain circumstances, decisions based on sequential observations are better than
those based on fixed samples. This provides an important implication in the design of experiments, that is,
depending on the loss function L(θ ,d), the prior distribution π(θ) on the parameter space (or the space of
the state of nature) Θ, and the distribution of samples (or population) Pθ , experiments with fixed samples
or sequential observations can be optimally selected before the inception of experimentation. This
implication further motivates the development of multistage (or group sequential) design, which is widely
used in today’s clinical trials (Jennison and Turnbull 2000, Section 1.2).

However, in the real world, policy designers often do not know the prior distribution on the
parameter space for a proposed experiment. Therefore it is difficult to derive a stopping threshold, as for
the SPRT, based on the prior distribution. In this paper, we propose to use posterior distribution to proxy
the prior distribution in multistage experiment design.

In multistage experiment design, the experiment is carried out in several stages, and at each stage a
decision is made to continue or abort based on the results collected at previous stages. To see this process,
we consider the following decisionmaking problem for the designer of an experiment, who needs to
choose an action a from the action space A based on observations with a fixed sample size. Suppose the
experiment generates an observation X , which is sampled from the distribution Pθ , where θ ∈Θ is the
state of nature governing the outcome of the experiment. For given θ and an action d ∈A , the designer of
the experiment incurs a loss L(θ ,d). Given a prior distribution π(θ) on the parameter space Θ, the risk of
taking action d for parameter θ can be evaluated as

R(θ ,d) = Eθ L(θ ,d(X)) =
∫

L(θ ,d(x))dPθ (X) =
∫

L(θ ,d(X)) fθ (X)dX , (7)
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and the Bayes risk for decision rule d is

R(d) =
∫

R(θ ,d)dπ(θ) =
∫ [∫

L(θ ,d(X)) fθ (X)π(θ)dθ

]
dX (8)

(see Lai and Xing 2008, Section 4.3.2). To evaluate this risk through sampling, one should sample X from

its marginal distribution

f̃ (X) =
∫

fθ (X)π(θ)dθ (9)

instead of the prior distribution fθ (X). As the posterior distribution of θ given observation X , π̃(θ |X), is

expressed as

π̃(θ |X) = fθ (X)π(θ)/ f̃ (X), (10)

letting the average risk of decision d for given observation X as L̃(d|X), we then have

L̃(d|X) =
∫

L(θ ,d(X))π̃(θ |X)dθ , (11)

and hence the Bayes risk for a subset Ω0 ⊂Ω can be evaluated from the perspective of the sample space

and written as

R(d|Ω0) =
∫

Ω0

L̃(d|X) f̃ (X)dX . (12)

The above result has the following implications for experiment design:
1. To evaluate this risk through sampling for the whole sample space Ω, experimenters can sample

X1, . . . ,Xn independently and identically (that is, with full randomization) from the posterior
distribution f̃ (X) without knowing the prior distribution. Then the risk can be approximated by

R(d|Ω)≈ RFullRand := n−1
n

∑
i=1

L̃(d|Xi), Xi ∼ f̃ (X). (13)

2. The posterior loss function L̃(d|X) in the randomization procedure is not the same as the loss
function L(θ ,d(X)). This is particularly important for the designer of the experiment (or
policymaker), since the posterior loss L̃(d|X) could be very large (or even unaffordable) for a certain
sample X when the posterior loss is not homogeneous over the sample space Ω.

In experimental studies, one usually wants to evaluate the effects of a treatment while keeping the risk of
the experiment under control. Assume that the experiment designer has tolerance η for the risk of the
experiment. The above implications suggest that if the total risk R(d)≤ η , one could use full
randomization (or a randomized controlled trial [RCT]) to make inferences on the effects of the treatment;
otherwise, full randomization (or an RCT) should not be used.

Furthermore, this also provides a procedure for a multistage sequential experiment: Suppose the
posterior loss L̃(d|X) takes a finite set of values 0≤ v1 < · · ·< vK < ∞ over the sample space. Let
Ωk := {X ∈Ω | L̃(d|X) = vk}; then {Ωk,1≤ k ≤ K} is a disjoint partition of the sample space Ω. The
experiment can be carried out in at most K stages. In the kth stage, one should sample {Xk,1, . . . ,Xk,nk}
independently and identically from f̃ (X) with the constraint X ∈Ωk. Since the risk at stage k is
approximated by

vk ≈ Rk,Rand :=
1
nk

nk

∑
i=1

L̃(d|Xk,i), Xk,i ∈Ωk. (14)
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The experiment should be stopped at state k∗ such that

k∗ = min{k ≤ K |
k

∑
i=1

vi ≥ η}. (15)

Obviously, the above multistage experiment incurs risk that is no larger than that in an experiment with

full randomization and is bounded by the experiment designer’s risk tolerance.
In general, when the posterior loss L̃(d|X) takes continuous values, we might consider the

following multistage experiment procedure: Suppose the risk tolerance for the experiment designer is η .
The first stage of the experiment can be done for a subset Ω1 of the sample space, such that

∫
Ω1

L̃(d|X) f̃ (X)dX < η . (16)

Note that this Ω1 may or may not be uniquely determined, depending on other constraints of the

experiment. In practice, the search of such Ω1 may not be done in advance, and hence the designer selects
a subset Ω̃ for the experiment. If the resulting risk R(d|Ω̃)> η , the experiment should be stopped.
Otherwise, the experiment can move on to collect more observations for study in the next stage. If an
experiment is finished in at most two stages, the difference of Bayes risk in the one- and two-stage

experiments is expressed as
R(d|Ω)−

[
R(d|Ω1)+1{R(d|Ω1)≤η}R(d|Ω\Ω1)

]
= 1{R(d|Ω1)>η}R(d|Ω\Ω1)≥ 0.(17)

It is apparent that, overall, a sequential experiment procedure incurs a lower Bayes risk than an
RCT on the whole sample.

Examples of Adaptive Sequential Experiment

We discuss here two examples of adaptive sequential experiments, making use of the preceding discussion.
The examples here concern two major statistical inference problems, estimation and hypothesis testing, in
each step of the experiment design. They further explain how the sampling or randomization should be
done for subsets of the sample space when the experiment designer incurs a risk tolerance.

Example 1. Estimation of the nature of state. Suppose that θ is the unknown state of nature governing
the outcome of a process, and θ is an element of the parameter Θ. Given θ , the experiment could generate
observations X1, . . . ,Xn that can be considered as independent and identically distributed samples from the
distribution Pθ ∼ N(θ ,σ2) with the density function fθ (x). The experiment designer has a prior belief
π(θ)∼ N(µ,ν2) on the distribution of θ , that is, π(θ) is the prior distribution of θ . A decision function d
here refers to an estimator of θ using X1, . . . ,Xn and the prior belief, and the loss function is given by a
quadratic function L(θ ,d) = (θ −d)2. The experiment designer needs to perform an experiment of
sampling observations X1, . . . ,Xn from Pθ , subject to the constraint that the total risk R(d) must have η as
its upper bound. (To simplify the discussion, we assume the sampling cost is zero.) The questions here
include (a) Should the sampling be carried out in the whole sample space Ω or a subset Ω0 ∈Ω? and (b) If
the sampling can be done in Ω0 ∈Ω, how should Ω0 be determined?

Since the experiment designer has a prior belief concerning θ , we shall notice that the posterior
distribution of θ , given X , is given by

π̃(θ |X)∼ N
( µ

ν2 +
X
σ2

1
ν2 +

1
σ2

,
1

1
ν2 +

1
σ2

)
, (18)
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and the marginal distribution of X on the sample space Ω = (−∞,∞) is

f̃ (X)∼ N(µ,ν2 +σ
2). (19)

We now discuss the design issues when the designer faces homogeneous and heterogeneous
average risks L̃(d|X) for different decision (or estimation) functions. We first consider the case based on an
optimal decision. The quadratic loss function L(θ ,d) and the Bayesian decision theory imply that the
optimal decision or estimator here is the posterior mean of θ , which is expressed as

θ̂Bayes = d(X) =

µ

ν2 +
X
σ2

1
ν2 +

1
σ2

. (20)

Given this decision, its average risk for observation X can be computed as

L̃(θ̂Bayes|X) =
∫
(θ − θ̂Bayes)

2
π̃(θ |X)dθ =

σ2ν2

σ2 +ν2 . (21)

Note that for the quadratic loss function here, the average risk of θ̂Bayes given X is homogeneous over the

sample space. Therefore, if η ≥ σ2ν2

σ2+ν2 , we have η ≥ B(θ̂Bayes) and accordingly, X1, . . . ,Xn can be sampled

from the whole sample space Ω. However, if 0 < η < σ2ν2

σ2+ν2 , we shall have that for X1, . . . ,Xn ∈Ω0 ⊂Ω,

and X1, . . . ,Xn are independent and identically distributed as f̃ (X):

1
n

n

∑
i=1

L̃(θ̂Bayes|Xi)≈
∫

Ω0

L̃(θ̂Bayes|X) f̃ (X)dX =
σ2ν2

σ2 +ν2

∫
Ω0

f̃ (X)dX ≤ η . (22)

This implies that Ω0 satisfies ∫
Ω0

f̃ (X)dX ≤
( 1

σ2 +
1

ν2

)
η < 1. (23)

Furthermore, we should notice that Ω0 cannot be any set satisfying (23), since the sample mean of θ̂Bayes

on Ω0 needs to match that on the whole sample space. In such a case, Ω0 should be symmetrical around µ

and uniquely determined, that is,

Ω0 = {X | µ−
√

σ2 +ν2z0 ≤ X ≤ µ +
√

σ2 +ν2z0}, (24)

in which z0 satisfies ∫ z0

0

1√
2π

e−
t2
2 dt =

η

2

( 1
σ2 +

1
ν2

)
. (25)

We now consider another decision (or estimator), the shrinkage estimator, which is not optimal in the

Bayes sense but sometimes has desirable properties. The shrinkage estimator originates from the
James-Stein estimator (Stein 1956; James and Stein 1961) and has been used to solve various statistical
inference problems in recent decades. To explain the idea, we assume that the designer uses the following
shrinkage estimator:

θ̂Shrink,λ =

µ

ν2 +λ
µ

ν2 +(1−λ ) X
σ2

1
ν2 +

1
σ2

= θ̂Bayes +λ

µ

ν2 − X
σ2

1
ν2 +

1
σ2

, (26)
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in which λ is a shrinkage parameter specified by the designer. This implies an heterogeneous average risk

for observation X , that is,

L̃(θ̂Shrink,λ |X) = λ

(
µ

ν2 − X
σ2

1
ν2 +

1
σ2

)2

+
1

1
ν2 +

1
σ2

. (27)

This suggests that the although the decision function θ̂Shrink,λ has the same form for all samples, the

designer actually has different risk concerns for different samples, and hence sampling or randomization
cannot be simply performed over all samples. In particular, we shall note that if

η ≥ R(θ̂Shrink,λ |X) =
1

1
ν2 +

1
σ2

+
λ( 1

ν2 +
1

σ2

)2

[( 1
ν2 −

1
σ2

)
µ

2 +
σ2 +ν2

σ4

]
, (28)

the designer can still run randomization on (or sample from) the whole sample space Ω. If

η < R(θ̂Shrink,λ |X), the designer should run randomization on a subset Ω1 of Ω such that

∫
Ω1

L̃(θ̂Shrink,λ |X) f̃ (X)dX ≤ η . (29)

If the designer still requires the sampling to be symmetrical around the mean of f̃ (X) or other constraints,

then Ω1 can be uniquely determined.

Example 1 explains how the experiment should be designed when the purpose is to estimate the
nature of state. This includes evaluating the effects of a treatment or of a policy intervention. The average
risk L̃(d|X) describes the loss of decision d for all possible values of the nature of a state on sample X , and
it can be interpreted as the spillover effect of decision d on sample X . Depending on the decision function
d, the average risk L̃(d|X) can be homogeneous or heterogeneous with respect to the sample space. For the
heterogeneous case, L̃(d|X) is a function of X , and the designer has to incorporate this into his risk concern
and hence carefully select regions for sampling or randomization. This result explains the case studies in
Section 2. The interesting part of Example 1 is that when the average risk L̃(d|X) is homogeneous over the
sample space, the designer still needs to find sampling regions to keep the risk level within his tolerance.

Example 2. Hypothesis testing of treatment effects. Suppose that θ represents the treatment effect in an
experiment. The designer is interested in testing the hypothesis H0 : θ = θ0 versus the alternative,
H1 : θ = θ1(6= θ0). Assume that X1, . . . ,Xn are independently and identically sampled from the distribution
Pθ with density function fθ (X). Then standard statistical hypothesis testing theory implies that H0 should
be rejected if the likelihood ratio LR = F(θ1)/F(θ0) exceeds some threshold γ , in which F(θ) is the
likelihood function given by

F(θ) =
n

∏
i=1

fθ (Xi). (30)

Corresponding to this decision rule, the possible wrong decision includes the cases of accepting H0 when

H1 is true and rejecting H0 when H0 is true, which happens with probabilities α = Prob(reject H0
|H0 is true) and β = Prob(accept H0 |H1 is true), respectively. Because the correct decision incurs no loss,
we assume that w0(X1, . . . ,Xn) is the loss incurred by rejecting H0 when H0 is true and w1(X1, . . . ,Xn) is
the loss incurred by accepting H0 when H1 is true. Note that in standard testing theory for fixed samples,
the loss functions w0 and w1 are usually constant with respect to the samples. In the case of experiment
design, the designer needs to consider the impact of the wrong decision on the samples themselves and the
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possible spillover effects; hence w0 and w1 should be functions of the sample. Furthermore, we assume
that the designer believes that θ can take on θ0 and θ1 with prior probabilities π and 1−π , respectively.
The designer then obtains the following risk function for this experiment (we still assume that the cost of
sampling is zero):

R(d|X) = παw0(X)+(1−π)βw1(X). (31)

We shall notice that if the spillover effect should not be considered, such that w0 and w1 are constant over

Ω, the designer could run full RCT on the sample space. However, since the spillover effect is
incorporated into the study, the risk R(d|X) becomes a function of sample X , and the designer should
consider the problem of minimizing R(d|X) over the sample space. In particular, the equation R′(d|X) = 0
implies that the sample X satisfies

παw′0(X)+(1−π)βw′1(X) = 0. (32)

A simple interpretation of the above constraint is as follows. Suppose the spillover effects of X on Ω are

stratified on two disjoint subsets Ω0, Ω1 := Ω\Ω0, that is, wi(Ω j) = vi j. If

R(d|Ω0) = παv00 +(1−π)βv10 < R(d|Ω1) = παv01 +(1−π)βv11, (33)

then the designer should run RCT on the subset Ω0 first with the minimum risk that he can tolerate.

We might use Example 2 as an interpretation of the case studies in Section 2. For drug
development, the sample space Ω includes all the experimental subjects (animals and humans), the
distribution Pθ (·) represents the results of treatment on different subjects, and wi(X) (i = 0,1) represents
the spillover effect of a particular treatment on subject X . We realize that the animal subject X ∈Ω0
usually has a smaller spillover effect or loss than the human subject X ∈Ω\Ω0. Hence, in order to develop
a safe and effective drug for a particular disease of humans, animal subjects Ω0 can be “sacrificed” or used
in the experiment to determine if the drug contains any toxic components. This view is consistent with the
fact that pharmaceutical companies are afraid of adverse effects of their drugs on humans because the FDA
may pull the drugs out of the market, evaporating billions of dollars of investment. Similarly, in China’s
economic reforms, policymakers often place considerable weight on failures of policy experiments. A
failure in a big city, for example, Beijing, will be widely known to the whole of China, jeopardizing
political stability and politicians’ careers. In contrast, if an experiment fails in a remote area, very few
people will notice. This is why most Chinese economic reforms have started from a remote location (as
with the rural household responsibility system) or in a controlled environment (like the Shenzhen special
zone).
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4. CONCLUSIONS

In the real world, agents often place a great deal of weight on the potential negative effects of a treatment
such as a new drug, a policy reform, or a new industrial product. Since randomized controlled trials
(RCTs) mainly measure the average treatment effect and do not take into account the potential
heterogeneous effect, agents are often reluctant to run RCTs for fear of intolerable adverse consequences
for a subgroup of the population from the very beginning. Instead, they prefer to first screen out those
options that likely will result in unbearable outcomes through incremental experimentation. Only when
they are assured that there are not major risks associated with a treatment do they consider scaling it up.

As a more pragmatic approach, when facing uncertainty about the potential benefits and costs of a
treatment, it is better for researchers and policymakers to first conduct experiments in isolated areas. Even
if such experiments are not so rigorously conducted as to include control groups, the pilots enable
researchers to observe what works and what does not on the ground. Through these sequential
experiments, the options with clear negative effects, even if only on some segments of the population, can
be eliminated. Where feasible, an RCT can be used to evaluate the average effect of a treatment only after
it has been shown to have no major negative side effects in previous stages.

Apart from concerns about potential negative effects, experiment designers also often face general
equilibrium and political economy issues in particular with respect to social and economic policies
(Acemoglu 2010). The positive effect observed in an RCT on a small scale may dissipate or even reverse
itself when the experiment is scaled up. As a matter of fact, the sequential experiment approach proposed
in this paper can help mediate this concern by uncovering the true general equilibrium effect step by step.
Similarly, the sequential experiment approach can ameliorate concerns about potential political economy
risks. Since experiments are conducted sequentially, if political economy risks are revealed at a certain
stage of the experiment, the experiment can be immediately called off to avoid increased political backlash.

If evidence based on RCTs is overwhelmingly favored, then there is a tendency for researchers and
practitioners to select treatments that obviously have low risk. The selection bias may inherently limit the
utility of the chosen treatments for addressing real-world issues in a more relevant way because those
treatments with potential big payoffs (and presumably high risks) have likely been screened out (Rodrik
2009).
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