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ABSTRACT 

While there is a large body of literature on the negative health effects of air pollution, there is much less 
written about its effects on cognitive performance for the whole population. This paper studies the effects 
of contemporaneous and cumulative exposure to air pollution on cognitive performance based on a 
nationally representative survey in China. By merging a longitudinal sample at the individual level with 
local air-quality data according to the exact dates and counties of interviews, we find that 
contemporaneous and cumulative exposure to air pollution impedes both verbal and math scores of survey 
subjects. Interestingly, the negative effect is stronger for men than for women. Specifically, the gender 
difference is more salient among the old and less educated in both verbal and math tests. 

Keywords:  cognitive performance; air pollution; gender difference 

JEL Codes: I24, Q53, Q51, J16 
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1.  INTRODUCTION 

While a large body of literature has shown that air pollution poses a significant threat to human health,1 
knowledge about the potential consequences of air pollution on cognitive abilities is more limited. Poor 
cognitive function may have profound social, economic and health implications (Lang et al. 2008). While 
recent studies have explored the link between air pollution and cognition (Sanders 2012; Bharadwaj et al. 
2014; Ham, Zweig, and Avol 2014; Molina 2016; Marcotte 2016; Ebenstein, Lavy, and Roth 2016), 
several challenges plague the empirical identifications. 

First, omitted variables correlated with both cognition and exposure to air pollution may bias 
estimations. Most studies, except for Ebenstein, Lavy, and Roth (2016) and Marcotte (2016), do not 
account for individual-level heterogeneity. For instance, Ham, Zweig, and Avol (2014) only control for 
school-grade fixed effects, and Bharadwaj et al. (2014) include sibling fixed effects. In this study, we are 
able to remove individual-level unobservable factors by using a longitudinal dataset – the China Family 
Panel Studies (CFPS). 

Second, most existing studies consider either the effects of transitory or cumulative exposure to 
air pollution but rarely both effects simultaneously, with the exception of Marcotte (2016). For example, 
Ham, Zweig, and Avol (2014) and Ebenstein, Lavy, and Roth (2016) focus on contemporaneous 
exposure; Bharadwaj et al. (2014), Molina (2016) and Sanders (2012) examine cumulative exposure. We 
are among the first to examine both contemporaneous and cumulative exposure to air pollution on 
cognitive performance. By simultaneously studying both effects, we are able to determine the degree to 
which human beings can adapt to air pollution in the long run. In addition, the relative importance of the 
two effects has policy implications. In the case of test taking, if transitory effects dominate, resources 
could be directed toward limiting pollution near test sites or rescheduling high-stakes exams in the event 
of severe air pollution. However, these short-term interventions may be less effective than more drastic 
actions to cut air pollution if cumulative effects dominate. 

Third, most cognitive tests in previous studies were administered to young cohorts, such as 
students (Ham, Zweig, and Avol 2014; Stafford 2015; Ebenstein, Lavy, and Roth 2016). It is not clear 
whether the findings inferred from these specific groups hold true for the population as a whole. The 
cognitive tests in our nationally representative sample cover nearly all ages above 10, which enable us to 
test if there is age heterogeneity in cognition. 

Fourth, most economic studies have been silent about gender gap in cognitive performance. We 
provide the first attempt to explicitly testing how air pollution may affect males differently from females 
and explain the potential mechanisms at work. Understanding the gender gap in cognitive performance as 
a result of environmental stressors may bear implications for gender equity in schooling and allocative 
efficiency in the labor market. 

Fifth, most previous studies do not match exposure to local environmental stressors with 
individual cognitive performance according to the exact time of test taking. For instance, Ham, Zweig, 
and Avol (2014) match yearly air pollution with average standardized test scores at the school-grade 
level. Measures of yearly air pollution capture the accumulative effect but not the instantaneous effect of 
air pollution on cognitive performance at the time of the exams. Using information on the exact time and 
location of the interview for each survey subject, we can match test scores and local air pollution levels 
more precisely than what was possible in previous studies. 

We find that contemporaneous and cumulative exposure to air pollution lowers both verbal and 
math test scores of survey subjects, and the effect on verbal abilities is larger than the effect on math 
skills. The effect is more pronounced for men than for women, meaning men perform worse than women 
on both tests when exposed to the same dose of air pollution. Our calculation suggests that males’ verbal 
test scores on a day with hazardous air pollution (API ≥ 301) are on average 0.30 standard deviations 
lower than their scores on a day without air pollution (API ≤ 50). In addition, the gender difference is 
more salient among the old and less educated in both tests. 
                                                      

1 The literature includes but is not limited to studies on the effect of air pollution on life expectancy (Chay and Greenstone 
2003), illness and hospitalization rates (Pope, Bates, and Raizenne 1995; Cohen et al. 2005), child health (see an excellent review 
by Currie et al. 2014), and health behavior (Graff Zivin and Neidell 2009; Zheng, Sun, and Kahn 2015). 
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The large gender gap in cognitive abilities probably has something to do with gender difference 
in the composition of gray matter (information processing centers) and white matter (the connections 
between these processing centers) in brain’s central nervous system. The gray matter is highly associated 
with mathematical skills. The white matter is mainly responsible for coordinating communication 
between different brain regions and largely determines language skills. It has been found that air pollution 
mainly reduces the density of white matter (Calderón-Garcidueñas et al. 2008; Wilker et al. 2015). This 
explains why air pollution affects verbal test scores more than math test scores. Given men’s relatively 
smaller volume of white matter activated during general intelligence tests than women do (Haier et al. 
2005), it is not surprising that air pollution exposure has a more negative effect on men, as shown by its 
effect on their verbal test scores. 

Our study also relates to the broader literature on the effect of air pollution on a wide variety of 
topics which range from happiness and mental well-being (Luechinger 2009; Levinson 2012; Zhang, 
Zhang, and Chen 2015) to labor productivity (Graff Zivin and Neidell 2012; Chang et al. 2014, 2016; He, 
Liu, and Salvo 2016). Given the importance of human capital as a principal engine of economic growth, 
the relationship between air pollution and cognition reveals an important but underexplored channel 
through which environmental stressors may affect economic well-being. 

The remainder of the paper is organized as follows. Section 2 describes the data. Section 3 lays 
out the empirical strategy. Section 4 presents our main findings. Section 5 concludes. In the Appendix B, 
we discuss the scientific background of this study and potential mechanisms in detail. 
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2.  DATA 

Cognitive Tests 

We utilize cognitive test scores from the CFPS, a nationally representative survey of Chinese families and 
individuals conducted in 2010, 2012, and 2014. The CFPS includes questions on a wide range of topics 
for families and individuals from 162 counties in 25 provinces of China, including their economic 
activities, education outcomes, family dynamics and relationships, health, and cognitive abilities.2 

The CFPS is suitable for our study for several reasons. First, the survey includes several 
standardized cognitive tests. Second, exact information about the geographic locations and dates of 
interviews is available to us for all respondents, enabling us to precisely match individual test scores in 
the survey with local air-quality data. Third, the longitudinal data allow us to remove unobserved 
individual factors that may bias estimates. Further, the survey embodies rich information at multiple 
levels, allowing us to control for a wide range of covariates. Finally, because the cognitive tests are 
administered to all age cohorts older than 10, we can study the effects of air pollution on different age 
groups. 

CFPS 2010 and CFPS 2014 contain the same cognitive ability module, that is, 24 standardized 
mathematics questions and 34 word-recognition questions. All these questions are obtained from standard 
textbooks and are sorted in ascending order of difficulty. The starting question depends on the 
respondent’s education level.3 The test ends when the individual incorrectly answers three questions in 
succession. The final test score is defined as the rank of the hardest question a respondent is able to 
answer correctly. If the respondent fails to answer any questions during the test, his or her test score is 
assigned as the rank of the starting question minus one. For example, a respondent with middle school 
education begins with the 9th question in the verbal test. If the hardest question he is able to answer 
correctly is the 14th question, then his verbal test scores would be 14. However, if he fails the 9th, 10th, 
and 11th questions consecutively, his verbal test scores would be 8.4 

Weather and Pollution Measures 

We measure air quality using the air pollution index (API), which is aggregated based on daily readings 
for three atmospheric pollutants, namely sulfur dioxide (SO2), nitrogen dioxide (NO2), and particulate 
matter smaller than 10 micrometers (PM10).5 The API ranges from 0 to 500, with larger values indicating 
worse air quality.6 Daily API observations are taken from the city-level air-quality report published by 
the Chinese Ministry of Environmental Protection (MEP). The report includes 86 major cities in 2000 and 
covers all the cities in 2014.7 Figure A.1 plots the daily API in China from 2010 to 2014. 

                                                      
2 The CFPS is funded by Peking University and carried out by the university’s Institute of Social Science Survey. The CFPS 

uses multistage probability proportional to size sampling with implicit stratification to better represent Chinese society. The 2010 
CFPS baseline sample is drawn through three stages (county, village, and household) from 25 provinces. The 162 randomly 
chosen counties largely represent Chinese society (Xie and Hu 2014). 

3 Specifically, those whose education level is primary school or below start with the 1st question; those who attended 
middle school begin with the 9th question in the verbal test and the 5th question in the math test; and those who finished high 
school or above start with the 21st question in the verbal test and the 13th question in the math test. 

4 The respondents did not know the rules before they were interviewed. So they did not have the incentive to fail the tests on 
purpose. 

5 We use the Chinese Ministry of Environmental Protection’s (MEP’s) breakpoints table (see Table A.1) and the following 
formula to generate the API measurement: IP = ((IHI - ILO) / (BPHI - BPLO)) * (CP - BPLO) + ILO, where IP is the index for pollutant 
P, CP is the rounded concentration of pollutant P, BPHI is the breakpoint that is greater than or equal to CP, BPLO is the breakpoint 
that is less than or equal to CP, IHI is the API value corresponding to BPHI, and ILO is the API value corresponding to BPLO. The 
API represents the highest index value calculated for each pollutant. 

6 Carbon monoxide (CO), ozone, and particulate matter smaller than 2.5 micrometers (PM2.5) were not added to the basket 
of the index until 2014. Because all the cognitive tests were administered between 2010 and 2014, we transform the air quality 
index (AQI) to the API in 2014 and use the API based on SO2, NO2, and PM10 in our paper. 

7 If the government indeed manipulates the API data as suggested by Chen et al. (2012) and Ghanem and Zhang (2014), 
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We also include rich weather data in our analysis to help isolate the impact of air pollution from 
the impact of overall weather patterns. The weather data comes from the National Climatic Data Center 
(now known as the National Centers for Environmental Information) of the US National Oceanic and 
Atmospheric Administration. The dataset contains daily records of weather conditions, such as 
temperature, precipitation, wind speed, and indicators for bad weather, from 402 monitoring stations in 
China.8 

We match city-level API with CFPS samples in the following way. If a CFPS county is within an 
API reporting city, we use the city’s API reading as the county’s reading. If it does not lie in any API 
cities, we use the API readings of the nearest available city within 40 kilometers according to the distance 
between the centroid of the CFPS county to the boundaries of nearby API reporting cities. Our baseline 
results are robust if we restrict the sample to only respondents living in API reporting cities.9 Following 
the convention of the literature (Levinson 2012), we use the radius of 40 km in our analyses to ensure 
precise match and retain greater number of observations. The weather conditions are obtained as the 
inverse distance-weighted average of all monitoring stations within a radius of 100 kilometers of the 
county centroid.10 The binary indicator for bad weather comes from the nearest monitoring station. 

The CFPS surveyed a balanced panel of 25,485 individual respondents over age 10 in 2010 and 
2014, for a total of 50,970 observations.11 Of the individuals surveyed in both waves, 181 are missing 
values for cognitive test scores. Among the remaining 50,789 observations, 37,918 observations could be 
matched to API and weather data.12 Due to some missing values for household demographics, the final 
dataset used in this study includes 31,959 observations. Figure A.2 displays the percentage of respondents 
who took the cognitive tests and the hourly pollutant concentration. Most of the cognition tests were 
conducted in the afternoon and evening. Among the three major pollutants, PM10 is a dominant one 
throughout the day. 

                                                      
using the official API data would underestimate the true impact of air pollution. In this case, our estimates would represent a 
lower bound. 

8 Bad weather includes fog, rain/drizzle, snow/ice pellets, hail, thunder, and tornadoes/funnel clouds. 
9 The results are available upon request. 
10 The matching radius is comparable to those used in Deschenes, Greenstone, and Guryan (2009) and Deschenes and 

Greenstone (2011). Our baseline results are robust to alternative weights, including inverse of the square root distance or squared 
distance between the monitoring stations and the county centroids. The results are available upon request. 

11 The attrition rates for consecutive waves, that is, 2010–2012 and 2012–2014, are 19.3 percent and 13.9 percent, 
respectively. We compare the attrition rate of the CFPS with that of the UK Household Longitudinal Survey (UKHLS). The two 
surveys were conducted during the same period and followed similar interview methods, so the UKHLS serves as a good 
benchmark for the CFPS. Compared to the UKHLS, the CFPS’s attrition rate is reasonable. The key reason for using the 2010 
and 2014 waves is that the two waves included the same test modules, whereas the short memory and logic tests employed in the 
2012 wave are not comparable with the tests used in the other two waves. 

12 Counties unmatched to any API report cities within 40 kilometers or weather stations within 100 kilometers are dropped. 
The matching rate of 74.7 percent (37,918 out of 50,789) is within a reasonable range compared with other studies. For example, 
Levinson (2012) was able to maintain 52.3 percent of the observations when matching the US General Social Survey with PM10 
readings from the Environmental Protection Agency’s Air Quality System. 
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3.  EMPIRICAL STRATEGY 

Our baseline econometric specification is as follows: 
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The dependent variable Scoreijt is the cognition test scores of respondent i in county j at date t. The key 
variable 1

,0
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P
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−

−=∑ is the mean API readings in the past k days. It indicates the air quality measure at 
date t if k equals 1. We control for a set of demographic correlates Xijt, including gender, age and its 
square and cubic terms, log form of household per capita income, years of education and an indicator of 
cross-county migration.13 We also control for a vector of rich weather conditions Wjt, involving a set of 
temperature bins (that is, <25°F, 25–45°F, 45–65°F, 65–85°F, and >85°F), total precipitation, mean wind 
speed, and a dummy for bad weather on the day of the interview, and a vector of county-level 
characteristics Tjt, including gross domestic product (GDP) per capita (deflated to 2010 yuan), population 
density, and industrial value share, to account for factors that are correlated with both test scores and air 
quality.14 λ𝑖𝑖 denotes individual fixed effects. 𝛿𝛿𝑗𝑗 represents county fixed effects. 𝜂𝜂𝑡𝑡 indicates month, day 
of week, and post meridiem hour fixed effects. f(t) is the quadratic monthly time trend that ranges from 1 
(January, 2010) to 60 (December, 2014). 𝜀𝜀𝑖𝑖𝑖𝑖𝑖𝑖 is the error term. Standard errors are clustered at the county 
level.15 Table 3.1 describes key variables and their summary statistics. 

Table 3.1 Summary statistics 

Variable Description 
All  Male  Female 

Mean SD  Mean SD  Mean SD 
Verbal scores verbal scores 18.115 10.488  19.728 9.431  16.629 11.171 
Math scores math scores 10.438 6.403  11.497 5.924  9.464 6.667 
API API 73.519 32.683  73.203 31.714  73.810 33.549 
API_7 7-day mean API 72.907 21.360  72.641 21.108  73.151 21.588 
API_30 30-day mean API 73.012 17.125  72.822 17.086  73.187 17.160 
API_90 90-day mean API 75.529 16.179  75.359 16.129  75.686 16.223 
API_1y 1-year mean API 84.009 20.804  83.832 20.865  84.172 20.747 
API_2y 2-year mean API 78.386 16.245  78.223 16.329  78.536 16.167 
API_3y 3-year mean API 75.284 13.397  75.110 13.462  75.443 13.335 

Household per 
capita income (log) 

Log form of household 
per capita income 
(Chinese yuan) 8.874 1.154  8.891 1.153  8.858 1.155 

Age Age 44.738 17.893  44.920 18.160  44.572 17.643 
Education years Education years 7.187 4.657  7.938 4.309  6.497 4.854 

Source:  Authors’ estimations using CFPS survey 2010 and 2014 (ISSS 2013; 2016). 
Note:  API = air pollution index; SD = standard deviation.
  

                                                      
13 Our baseline results are robust if using nonmigrants only. The results are available upon request. 
14 Graff Zivin, Hsiang, and Neidell (2015) find that high temperature is associated with significant decreases in cognitive 

performance on math in the short run. Here we have controlled for a set of temperature bins to capture the effect. 
15 Our results are robust to controlling for province-by-year fixed effects and clustering standard errors at the province level. 
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By conditioning on the full set of fixed effects listed above, the key parameters are identified by 
making use of variations in exposure to air pollution for the same respondent in the 2010 and 2014 
surveys. Figure A.3 displays the monthly distribution of interview times in the two waves of the CFPS 
survey. Although a majority of interviews were conducted in July and August when college students were 
employed as numerators, the survey spans all months and seasons, providing us with large temporal 
variations.16 

The validity of our empirical strategy also hinges on one key assumption: that variations in an 
individual’s exposure to air pollution at the time of the tests between the two waves have little to do with 
unobserved time-varying factors that may also affect cognitive performance. We have checked some 
other potential factors, such as the assignment of interviewers and the days of the week on which 
cognition tests were implemented, and found that these variables are random. 

                                                      
16 Besides, we divide the sample into two groups with equal weight. Respondents in group one were interviewed at least 

once in winter months (November, December and January), while respondents in group two were only interviewed in non-winter 
months (from February to October). The weighted regression indicates that the results are robust, meaning the size of the effects 
is similar to that estimated in the baseline results. Hence, the underestimation of the effect of air pollution, if any, is small. The 
results are available upon request. 
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4.  RESULTS 

Figure 4.1 plots residuals from regressions of verbal and math test scores on years of education versus age 
cohort for males and females in polluted and less polluted areas. As revealed in Panel A (verbal test 
scores) and Panel B (math test scores) of Figure 4.1, women and men perform equally well in both verbal 
and math tests before age 20. Both math and verbal test scores decline steadily with age afterwards for 
men and women, but the speed of decline is faster for women than men. As a result, the gender gap 
between males and females in cognitive scores widens as people become older. The large gender 
difference in test scores masks the difference in test scores between people living in more polluted and 
less polluted areas. 

Figure 4.1 Mean test scores by age and pollution level 
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Figure 4.1 Continued 

 
Source:  Authors’ calculations using CFPS survey 2010 and 2014 (ISSS 2013; 2016). 
Note:  The residuals are generated from regressions of test scores on education years. The less polluted and more polluted areas 
are divided by the median of the pollution level in the past year. The difference-in-differences is generated by the gender 
difference (male-female) in differences in test scores between polluted and less polluted areas. 

Considering that the gender difference may also result from some covariates other than air 
pollution, we use a difference-in-differences approach to remove these systematic factors. Specifically, 
we first obtain gender differences in test scores for polluted and less polluted areas, respectively, and then 
gauge the differences in the gender gap between more polluted and less polluted areas. Panel C displays 
the results. The difference-in-differences in test scores is negative for most cohorts, indicating that men 
are generally more vulnerable to air pollution than women. 

However, Figure 4.1 does not consider many other factors that may affect test scores, such as 
interpersonal differences. Next, we conduct more rigorous regression analyses by controlling for more 
individual-level factors. Table 4.1 presents regression estimates on the effect of air quality on verbal test 
scores (Panel A) and math test scores (Panel B) based on equation (1). In each panel, we test the impacts 
of contemporaneous exposure (Columns 1 and 2) and cumulative exposure (Columns 3 through 7), 
respectively.17 

Three findings are apparent from Table 4.1. First, in general, air pollution negatively affects 
respondents’ test performance as shown by the negative coefficient for the pollution variable in all the 
regressions. Except for the effect of one-day air pollution exposure on math test scores (first column in 
Panel B), all the coefficients for air pollution variable are statistically significant. The impact is 
economically significant. For example, the estimate in Column (5) of Panel A indicates that a one-unit 
increase in the annual mean API leads to a 0.043-point decline in verbal scores. Second, the impact of 
cumulative exposure on test scores is larger than that of contemporaneous exposure. As shown in the last 
row of Panel A and Panel B, an increase in the mean API on the interview date by one standard deviation 
(SD) lowers verbal test scores by 0.131 point (0.012 SD), while a one SD increase in average API over 
three years prior to the interview is associated with an up to as 1.139 points (0.109 SD) drop in verbal test 
scores. Third, air pollution exposure appears to have a more negative effect on verbal test performance 
than math test performance. It is evident that the changes in SDs in the parentheses presented at the 
bottom of Panel A for verbal test scores are more prominent than the corresponding ones in Panel B for 
math test scores. Given that the cognitive tests we used might be easier and less challenging than the 
college entrance exams, our identified contemporaneous effects are a little smaller than those obtained in 
Ebenstein, Lavy, and Roth (2016). For example, Ebenstein, Lavy, and Roth (2016) find that a one SD 

                                                      
17 In Table A.2, we further display results that add individual fixed effects and demographic controls step-by-step. 
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reduction in air pollution leads to an increase in Bagrut scores by 0.038 SD. However, our estimated 
cumulative effects are larger than their contemporaneous effects. 

Table 4.1 Effects of air pollution on cognitive test scores 
 Contemporaneous  Cumulative 
 1-day  7-day  30-day  90-day  1-year  2-year  3-year 
 (1)  (2)  (3)  (4)  (5)  (6)  (7) 

A. Verbal test scores 
1

0

1 k
t ii

API
k

−

−=∑  -0.004*  -0.014***  -0.035***  -0.044***  -0.043***  -0.057***  -0.085*** 

 (0.002)  (0.005)  (0.008)  (0.011)  (0.012)  (0.016)  (0.020) 
Observations 31,959  31,959  31,959  31,959  31,959  31,959  31,959 
Overall R2 0.280  0.278  0.282  0.338  0.283  0.286  0.321 
Impact of a one SD 
reduction in mean API 
on test scores (SDs of 
test scores) 

0.131 
(0.012) 

 
0.299 

(0.029) 
 

0.599 
(0.057) 

 
0.712 

(0.068) 
 

0.895 
(0.085) 

 
0.926 

(0.088) 
 

1.139 
(0.109) 

B. Math test scores 

1

0

1 k
t ii

API
k

−

−=∑  -0.001  -0.003**  -0.005**  -0.008**  -0.006**  -0.009**  -0.015** 

 (0.001)  (0.001)  (0.002)  (0.003)  (0.003)  (0.005)  (0.006) 
Observations 31,959  31,959  31,959  31,959  31,959  31,959  31,959 
Overall R2 0.667  0.664  0.663  0.707  0.672  0.684  0.693 
Impact of a one SD 
reduction in mean API 
on test scores (SDs of 
test scores) 

0.033 
(0.005)  0.064 

(0.010)  0.086 
(0.013)  0.129 

(0.020)  0.125 
(0.019)  0.146 

(0.023)  0.201 
(0.031) 

Source:  Authors’ estimations using CFPS survey 2010 and 2014 (ISSS 2013; 2016). 

Note: 1

0

1 k
t ii

API
k

−

−=∑ indicates the mean of API readings in the past k days, where k equals 1, 7, 30, 90, 365, 730, and 1,095, 

respectively. All the regressions include individual fixed effects; county fixed effects; year, month, day of week, and post 
meridiem hour fixed effects; and a quadratic monthly time trend. Demographic controls include gender, age and its square and 
cubic terms, household per capita income, years of education, and an indicator for migration. Weather controls include 20°F 
indicators for temperature bins (that is, <25°F, 25–45°F, 45–65°F, 65–85°F, and >85°F), total precipitation, mean wind speed, 
and a dummy for bad weather. County-level characteristics include gross domestic product (GDP) per capita, population density, 
and industrial value share. Robust standard errors, clustered at the county level, are presented in parentheses. API = air pollution 
index; SD = standard deviation. *10% significance level; **5% significance level; ***1% significance level. 

To further explore potential differential effects on men and women, Panel A and Panel B in 
Tables A.3 and A.4 present separate regressions on verbal and math test scores for males and females. 
Panel C combines the male and female subsamples and uses an interaction term between a dummy for 
males and pollution concentration to identify gender differences in the effect of exposure to air pollution 
on test scores. 

Figure 4.2 visualizes the key estimates obtained from Tables A.3 and A.4. Panel A is for verbal 
tests, while Panel B is for math test scores. In each panel, the left part presents the estimated coefficients 
for API, as well as their 95 percent confidence intervals, for men and women, respectively; the right part 
is drawn based on the estimates of the interaction term between air pollution and a gender dummy in the 
whole sample. As shown in the left part of Panel A, exposure to air pollution lowers verbal test scores for 
both men and women regardless of the length of exposure (with the exception of females’ one-day 
exposure). In general, the effect increases with the duration of exposure to air pollution. Men are more 
vulnerable to air pollution than women. The gender difference is statistically significant, as shown in the 
right part of Panel A. 
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Figure 4.2 Effects of air pollution on test scores, by gender 
Panel A: Verbal test scores 

 
Panel B: Math test scores 

 
Source:  Authors’ estimations using CFPS survey 2010 and 2014 (ISSS 2013; 2016). 
Note:  The figures plot the estimated coefficients with 95% confidence intervals based on the estimates in Tables A.3 and A.4. 
In each panel, the left part presents the coefficients on air pollution for males and females in the subsample; the right part is 
drawn based on the estimates of the interaction term between air pollution and a male dummy in the whole sample. 

As shown in Panel B, the effect on math tests is more muted than the effect on verbal tests. 
Although the coefficients for the API are negative in all 14 regressions in the left part of Panel B, they are 
only statistically significant in four regressions using the subsamples. Interestingly, the gender difference 
persists. All the seven coefficients for the interaction term between gender and level of air pollution as 
presented in the right part of Panel B are statistically significant at the 5 percent level. Once again, in 
accordance with the findings of Ebenstein, Lavy, and Roth (2016), men’s math performance is more 
significantly affected by exposure to polluted air than women’s performance. 
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To understand how the aging brain may affect the gender differences in the effect of air pollution 
on cognition, we repeat the exercises above to estimate the effect for different age groups, meaning, 
children (age 20 and under), young adults and the middle-aged (age 21 to 59), and seniors (60 and above). 
Figure 4.3a displays the estimated coefficients for API and their 95 percent confidence intervals in 
regressions on verbal test scores for different age groups. As revealed in Panel A, the negative effect of 
air pollution on verbal test scores is minimal for children with no obvious differential impact by gender. 
As shown in Panel B, for young adults and the middle-aged, air pollution has a detrimental effect on 
verbal scores for both men and women without showing a significant gender difference. For seniors 
(Panel C), air pollution is strongly associated with worse verbal test scores for males but not for females. 

Figure 4.3a Effects of air pollution on verbal test scores, by age 
Panel A: Age 20 and under 

 

Panel B: Age 21 to 59 
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Figure 4.3a Continued 

Panel C: Age 60 and over 

 
Source:  Authors’ estimations using CFPS survey 2010 and 2014 (ISSS 2013; 2016). 
Note:  In each panel, the left part presents the estimated coefficients with 95% confidence intervals on air pollution for males 
and females in the subsamples; the right part is drawn based on the estimates of the interaction term between air pollution and a 
male dummy in the whole sample. 

Figure 4.3b repeats the exercises but plots the coefficients and their confidence intervals in 
regressions on math test scores. Similar to the verbal test scores, there is a salient gender difference 
among the old cohorts. 

Figure 4.3b Effects of air pollution on math test scores, by age 

Panel A: Age 20 or under 
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Figure 4.3b Continued 

Panel B: Age 21 to 59 

 
Panel C: Age 60 or over 

 
Source:  Authors’ estimations using CFPS survey 2010 and 2014 (ISSS 2013; 2016). 
Note:  In each panel, the left part presents the estimated coefficients with 95% confidence intervals on air pollution for males 
and females in the subsamples; the right part is drawn based on the estimates of the interaction term between air pollution and a 
male dummy in the whole sample. 

We repeat estimations in Table 4.1 by running separate regressions on verbal tests for three 
subgroups based on education level—primary school and below, middle school, and high school and 
above, to identify potential heterogeneous effects by education. Figure 4.4a displays the coefficients for 
API across various windows of exposure. Overall, exposure to air pollution negatively affects verbal test 
scores, especially for less educated men, as shown in Panel A and Panel B. The effect is much weaker for 
the more educated (Panel C), probably because these individuals are more likely to work indoors or 
because they are more knowledgeable about the negative effects of air pollution. Figure 4.4b reports the 
same analysis for math test scores. Among the less educated group (middle school and below), men 
perform worse than women in the presence of air pollution. 
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Figure 4.4a Effects of air pollution on verbal test scores, by education level 

Panel A: Primary school or below 

 
Panel B: Middle school 
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Figure 4.4a Continued 

Panel C: High school or above 

 
Source:  Authors’ estimations using CFPS survey 2010 and 2014 (ISSS 2013; 2016). 
Note:  In each panel, the left part presents the estimated coefficients with 95% confidence intervals on air pollution for males 
and females in the subsamples; the right part is drawn based on the estimates of the interaction term between air pollution and a 
male dummy in the whole sample. 

Figure 4.4b Effects of air pollution on math test scores, by education level 

Panel A: Primary school or below 
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Figure 4.4b Continued 

Panel B: Middle school 

 
Panel C: High school or above 

 
Source:  Authors’ estimations using CFPS survey 2010 and 2014 (ISSS 2013; 2016). 
Note:  In each panel, the left part presents the estimated coefficients with 95% confidence intervals on air pollution for males 
and females in the subsamples; the right part is drawn based on the estimates of the interaction term between air pollution and a 
male dummy in the whole sample. 

In Table A.5, we further explore the heterogeneous effects by income and workplace. Comparing 
the coefficients for the API in Panel A (income level below median) and Panel B (income level above 
median), air pollution has a greater adverse effect on the low-income group than on the high-income 
group. Another comparison between Panel C (working outdoors) and Panel D (working indoors) reveals 
that the negative effect of air pollution is greater on people working outdoors than those working indoors. 
The gap widens when measuring the API over a longer period, suggesting a lasting, more negative effect 
of exposure to air pollution on men. 
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Some time-variant unobserved factors may affect both cognitive test scores and exposure to air 
pollution even after controlling for individual fixed effects. In a falsification test, we employ a strategy 
similar to Bensnes (2016). If concerns about such unobserved factors are valid, we would expect to see 
API readings on the days after cognitive tests also affect test scores. Figure 4.5 presents the estimated 
coefficients with their 95 percent confidence intervals from a regression of test scores on API readings 
one to six days into the future. For both men and women, all the coefficients are statistically indifferent 
from zero, largely dismissing the concern about potential omitted variables. 

Furthermore, Panel A and Panel B of Table A.7 in the appendix estimate verbal and math test 
scores, respectively, by simultaneously controlling for contemporaneous exposure as well as cumulative 
exposure. It is apparent from the table that cumulative exposure to air pollution plays a greater role in 
lowering verbal test scores than contemporaneous exposure. 

Figure 4.5 Placebo tests: Effects of air pollution on test scores in the days after the interview 

Panel A: Verbal test scores 
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Figure 4.5 Continued 

Panel B: Math test scores 

 
Source:  Authors’ estimations using CFPS survey 2010 and 2014 (ISSS 2013; 2016). 
Note: The figure plots the coefficients with 95% confidence intervals from a regression of test scores on air pollution index 
(API) readings in the days after the interview. Other controls and fixed effects are the same as those presented in Table 4.1. Table 
A.6 estimates a more flexible nonlinear functional form to capture potentially heterogeneous effects at various intervals of 
pollution concentrations. Figure A.4 reveals the distribution of API readings with these cutoffs. We assign several indicators to 
capture the interval bins of APIs and leave “API ≤ 50” as the reference bin. Since very few observations fall into the long-term 
average API > 100, we combine API readings from 101 to 200 as one bin when examining 90-day and longer interval exposures. 
We identify the impact of contemporaneous exposure in Panel A and Panel B and cumulative exposure in the remaining panels. 
Our results consistently show that males are more affected by both contemporaneous and cumulative air pollution exposure, 
while females are largely immune to the effect of short-term pollution during cognitive tests. Our back-of-the-envelope 
calculation suggests that men score 2.840 points (0.301 SD) lower on a day with hazardous air pollution (API ≥ 301) than on a 
day with good air (API ≤ 50). According to the relationship between test scores and education years revealed in Figure A.5, 2.840 
points corresponds to approximately 0.9 year of education. 
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5.  CONCLUSION 

This paper estimates the contemporaneous and cumulative impacts of air pollution on cognition by 
matching the scores of verbal and math tests given to people age 10 and above in a nationally 
representative survey with local air-quality data for the exact dates and locations of the interviews. 
Contemporaneous and cumulative exposure to air pollution significantly lowers both the verbal and math 
test scores of survey subjects. In general, men perform worse than women when exposed to the same dose 
of air pollution. The gender difference is more salient among the old and less educated in both tests. 

The population-weighted annual mean concentration of PM2.5 over 2014 in China is 68 µg/m3, 
much higher than the primary and secondary standards in the NAAQS published by the U.S. 
Environmental Protection Agency (EPA).18 Reducing the annual mean PM2.5 to levels below the 
secondary standard, which corresponds to 44 units in one-year-mean API, will lead to a sizable increase 
in verbal test scores by 1.89 points (or 0.63 education year) and math test scores by 0.26 point (or 0.16 
education year). 

As cognitive functioning is critical to everyday activities, human capital formation, and 
productivity, our finding about the negative effect of air pollution on cognition implies that the indirect 
effect on social welfare could be much larger than previously thought. A narrow focus on the negative 
effect on health may underestimate the total cost of air pollution. 

In Appendix B, we hypothesize that differences in brain composition may help explain why men 
appear more sensitive to the negative effects of air pollution. It is beyond the scope of this paper to 
formally test this mechanism. We leave it as a future research topic.

 

                                                      
18 The annual mean PM2.5 data at the city level are obtained from the China Environmental Statistical Yearbook 2015, and 

the population data (for the weighting purpose) come from China City Statistical Yearbook 2015. The primary and secondary 
standards of annual mean PM2.5 published by the EPA are 12 µg/m3 and 15 µg/m3, respectively. Source: 
https://www3.epa.gov/ttn/naaqs/standards/pm/s_pm_history.html. 

https://www3.epa.gov/ttn/naaqs/standards/pm/s_pm_history.html
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APPENDIX A:  SUPPLEMENTARY FIGURES AND TABLES 

Figure A.1 Daily air pollution index (API) in China, 2010–2014 

 

 

 
Source:  Daily air-quality report (MEP, PR China 2015). 
Note:  The daily mean API is calculated by finding the weighted average of all the API report cities within the region, where 
the weights are the yearly population in each city. The US National Ambient Air Quality Standard for fine particulate matter 
smaller than 10 micrometers is 0.15 mg/m3, which corresponds to API = 100 in China. Northeast China includes Heilongjiang, 
Jilin, and Liaoning. North China includes Beijing, Hebei, Inner Mongolia, Shanxi, and Tianjin. East China includes Anhui, 
Fujian, Jiangsu, Jiangxi, Shandong, Shanghai, and Zhejiang. Northwest China includes Gansu, Ningxia, Qinghai, Shanxi, and 
Xinjiang. Southwest China includes Guizhou, Sichuan, Tibet, Yunnan, and Chongqing. South China includes Guangdong, 
Guangxi, Hainan, Henan, Hubei, and Hunan. 
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Figure A.2 PM10 API, SO2 API, and NO2 API during the day, 2014 

 
Source:  Hourly air-quality report (MEP, PR China 2014). 
Note:  The hourly mean pollution concentrations are calculated using the average values from all the monitoring stations in 
China. The left axis indicates the pollutant API that converts the corresponding pollutant measure in micrograms per cubic meter 
(μg/m3) into an API score ranging from 0 to 500 using a formula devised by the MEP. The right axis indicates the interview time 
distribution (percent). This detailed air-quality dataset is only available for 2014, so we cannot use it in our main empirical 
analysis. API = air pollution index; NO2 = nitrogen dioxide; PM10 = particulate matter 10 micrometers or less in diameter; SO2 = 
sulfur dioxide.  

Figure A.3 Distribution of interviews by month in 2010 and 2014 

 
Source:  Authors. 
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Figure A.4 Distribution of API, 2010 and 2014 

 
Source:  Authors. 
Note:  API = air pollution index. 

Figure A.5 Relations between test scores and mean of education years 
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Figure A.5 Continued 

 
Source:  Authors. 
Note:  k values indicate the coefficients from regressing mean of education years on verbal test scores/math test scores. 

Table A.1 Breakpoints for API value calculation 
API index value PM10 (𝛍𝛍𝛍𝛍/𝐦𝐦𝟑𝟑) SO2 (𝛍𝛍𝛍𝛍/𝐦𝐦𝟑𝟑) NO2 (𝛍𝛍𝛍𝛍/𝐦𝐦𝟑𝟑) 

0 0 0 0 
50 50 50 40 

100 150 150 80 
150 250 475 180 
200 350 800 280 
300 420 1600 565 
400 500 2100 750 
500 600 2620 940 

Source:  Authors. 
Note:  API = air pollution index; NO2 = nitrogen dioxide; PM10 = particulate matter 10 micrometers or less in diameter; SO2 = 
sulfur dioxide. 
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Table A.2 Robustness checks: Adding controls step-by-step 
A: Verbal test scores 

 1-day mean  7-day mean  1-year mean 
 (1) (2) (3)  (4) (5) (6)  (7) (8) (9) 

1

0

1 k
t ii

API
k

−

−=∑  -0.002 -0.003 -0.004*  -0.010*** -0.011** -0.014***  -0.033*** -0.048*** -0.043*** 

 (0.002) (0.002) (0.002)  (0.004) (0.005) (0.005)  (0.011) (0.012) (0.012) 
Income per capita 0.353***  0.148*  0.353***  0.145*  0.355***  0.155* 
 (0.043)  (0.084)  (0.043)  (0.084)  (0.042)  (0.080) 
Years of education 1.393***  0.693***  1.394***  0.692***  1.393***  0.678*** 
 (0.020)  (0.108)  (0.020)  (0.108)  (0.020)  (0.106) 
Individual fixed effects No Yes Yes  No Yes Yes  No Yes Yes 
County-level characteristics Yes No Yes  Yes No Yes  Yes No Yes 
Observations 31,959 31,959 31,959  31,959 31,959 31,959  31,959 31,959 31,959 
Overall R2 0.351 0.351 0.351  0.340 0.340 0.340  0.327 0.327 0.327 

B: Math test scores 
 1-day mean  7-day mean  1-year mean 
 (1) (2) (3)  (4) (5) (6)  (7) (8) (9) 

1

0

1 k
t ii

API
k

−

−=∑  -0.001 -0.001 -0.001  -0.002 -0.002 -0.003**  -0.006* -0.010** -0.006** 

 (0.001) (0.001) (0.001)  (0.001) (0.002) (0.001)  (0.003) (0.004) (0.003) 
Income per capita 0.094***  0.014  0.094***  0.013  0.094***  0.015 
 (0.026)  (0.040)  (0.026)  (0.040)  (0.026)  (0.039) 
Years of education 1.113***  0.998***  1.113***  0.997***  1.113***  0.995*** 
 (0.009)  (0.049)  (0.009)  (0.049)  (0.009)  (0.049) 
Individual fixed effects No Yes Yes  No Yes Yes  No Yes Yes 
County-level characteristics Yes No Yes  Yes No Yes  Yes No Yes 
Observations 31,959 31,959 31,959  31,959 31,959 31,959  31,959 31,959 31,959 
Overall R2 0.714 0.714 0.714  0.698 0.698 0.698  0.693 0.693 0.693 

Source:  Authors. 
Note: 1

0

1 k
t ii

API
k

−

−=∑ indicates the mean of the air pollution index (API) in the past k days, where k equals 1, 7, and 365, respectively. All the regressions include county fixed 

effects; year, month, day of week, and post meridiem hour fixed effects; and a monthly quadratic time trend. Demographic controls include gender, age and its square and cubic 
terms. Weather controls include 20°F indicators for temperature bins (that is, <25°F, 25–45°F, 45–65°F, 65–85°F, and >85°F), total precipitation, mean wind speed, and a dummy 
for bad weather. County-level characteristics include gross domestic product (GDP) per capita, population density, and industrial value share. Robust standard errors, clustered at 
the county level, are presented in parentheses. *10% significance level; **5% significance level; ***1% significance level. 
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Table A.3 Effects of air pollution on verbal test scores, by gender 
Dependent variable Contemporaneous  Cumulative 
verbal scores 1-day  7-day  30-day  90-day  1-year  2-year  3-year 
 (1)  (2)  (3)  (4)  (5)  (6)  (7) 

A. Male subsample 
1

0

1 k
t ii

API
k

−

−=∑  -0.007**  -0.017***  -0.047***  -0.056***  -0.054***  -0.069***  -0.104*** 

 (0.003)  (0.006)  (0.010)  (0.014)  (0.014)  (0.020)  (0.026) 
Observations 15,318  15,318  15,318  15,318  15,318  15,318  15,318 
Overall R2 0.252  0.249  0.247  0.249  0.244  0.244  0.243 

B. Female subsample 
1

0

1 k
t ii

API
k

−

−=∑  -0.003  -0.010**  -0.023***  -0.034***  -0.033***  -0.045***  -0.067*** 

 (0.002)  (0.005)  (0.007)  (0.010)  (0.011)  (0.013)  (0.018) 
Observations 16,641  16,641  16,641  16,641  16,641  16,641  16,641 
Overall R2 0.450  0.449  0.456  0.460  0.440  0.437  0.444 

C. Whole sample with an interaction 

Male × 1

0

1 k
t ii

API
k

−

−=∑  -0.007***  -0.010**  -0.019***  -0.023***  -0.017***  -0.025***  -0.038*** 

 (0.003)  (0.004)  (0.005)  (0.005)  (0.004)  (0.007)  (0.012) 
Observations 31,959  31,959  31,959  31,959  31,959  31,959  31,959 
Overall R2 0.277  0.293  0.335  0.330  0.285  0.277  0.311 

Source:  Authors. 
Note:  See the notes to Table 4.1. 
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Table A.4 Effects of air pollution on math test scores, by gender 
Dependent variable Contemporaneous  Cumulative 
math scores 1-day  7-day  30-day  90-day  1-year  2-year  3-year 
 (1)  (2)  (3)  (4)  (5)  (6)  (7) 

A. Male subsample 
1

0

1 k
t ii

API
k

−

−=∑  -0.002  -0.003  -0.005**  -0.009**  -0.006  -0.008  -0.014* 

 (0.001)  (0.002)  (0.003)  (0.004)  (0.004)  (0.005)  (0.007) 
Observations 15,318  15,318  15,318  15,318  15,318  15,318  15,318 
Overall R2 0.512  0.524  0.514  0.517  0.534  0.513  0.537 

B. Female subsample 
1

0

1 k
t ii

API
k

−

−=∑  -0.001  -0.004**  -0.004  -0.008*  -0.007*  -0.010*  -0.016** 

 (0.001)  (0.002)  (0.003)  (0.004)  (0.004)  (0.006)  (0.008) 
Observations 16,641  16,641  16,641  16,641  16,641  16,641  16,641 
Overall R2 0.692  0.697  0.688  0.701  0.692  0.683  0.689 

C. Whole sample with an interaction 

Male × 1

0

1 k
t ii

API
k

−

−=∑  -0.003***  -0.005***  -0.008***  -0.011***  -0.008***  -0.012***  -0.016*** 

 (0.001)  (0.002)  (0.002)  (0.002)  (0.002)  (0.003)  (0.006) 
Observations 31,959  31,959  31,959  31,959  31,959  31,959  31,959 
Overall R2 0.671  0.705  0.699  0.691  0.671  0.670  0.677 

Source:  Authors. 
Note:  See the notes to Table 4.1. 
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Table A.5 Heterogeneous effects of air pollution on verbal test scores, by income and workplace 
Dependent variable Contemporaneous  Cumulative 
verbal scores 1-day  7-day  30-day  90-day  1-year  2-year  3-year 
 (1)  (2)  (3)  (4)  (5)  (6)  (7) 

A. Income level 0-50% 
1

0

1 k
t ii

API
k

−

−=∑  -0.006*  -0.014**  -0.037***  -0.053***  -0.061***  -0.093***  -0.127*** 

 (0.003)  (0.006)  (0.011)  (0.012)  (0.014)  (0.019)  (0.026) 
Observations 13,019  13,019  13,019  13,019  13,019  13,019  13,019 
Overall R2 0.338  0.338  0.338  0.338  0.338  0.338  0.338 

B. Income level 50-100% 
1

0

1 k
t ii

API
k

−

−=∑  -0.003  -0.013**  -0.033***  -0.040***  -0.033***  -0.036**  -0.060** 

 (0.002)  (0.006)  (0.009)  (0.013)  (0.012)  (0.017)  (0.023) 
Observations 18,213  18,213  18,213  18,213  18,213  18,213  18,213 
Overall R2 0.357  0.357  0.357  0.357  0.357  0.357  0.357 

C. Working outdoors 
1

0

1 k
t ii

API
k

−

−=∑  -0.006*  -0.009  -0.039***  -0.046***  -0.055***  -0.082***  -0.121*** 

 (0.003)  (0.007)  (0.012)  (0.015)  (0.015)  (0.018)  (0.024) 
Observations 13,029  13,029  13,029  13,029  13,029  13,029  13,029 
Overall R2 0.277  0.277  0.277  0.277  0.277  0.277  0.277 

D. Working indoors 
1

0

1 k
t ii

API
k

−

−=∑  -0.003  -0.016***  -0.031***  -0.040***  -0.032***  -0.036**  -0.055** 

 (0.002)  (0.005)  (0.008)  (0.012)  (0.011)  (0.015)  (0.022) 
Observations 18,930  18,930  18,930  18,930  18,930  18,930  18,930 
Overall R2 0.328  0.328  0.328  0.328  0.328  0.328  0.328 

Source:  Authors. 
Note: See the notes to Table 4.1. 
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Table A.6 Nonlinear effects of air pollution on verbal test scores 
Dependent 
variable A: 1-day mean  B: 7-day mean  C: 30-day mean 

verbal scores all male female  all male female  all male female 
 (1) (2) (3)  (4) (5) (6)  (7) (8) (9) 
0-50 (reference) -- -- --  -- -- --  -- -- -- 
            
51–100 0.112 -0.106 0.327  -0.327 -0.592 -0.054  -0.664 -1.162* -0.166 
 (0.286) (0.336) (0.293)  (0.382) (0.481) (0.368)  (0.481) (0.595) (0.434) 
101–150 -0.078 -0.215 0.027  -0.861* -1.108* -0.622  -1.684** -2.160** -1.234** 
 (0.329) (0.404) (0.366)  (0.495) (0.614) (0.499)  (0.687) (0.849) (0.605) 
151–200 -0.121 0.074 -0.286  -1.543 -2.068 -1.016  -6.901*** -8.421*** -5.176*** 
 (0.542) (0.825) (0.669)  (0.941) (1.278) (1.164)  (1.009) (1.283) (0.909) 
201–300 -1.241 -3.878** 0.700  -3.108 -3.908 -2.248  -- -- -- 
 (1.557) (1.569) (1.380)  (1.878) (3.016) (1.518)     
301–500 -0.715 -2.840** 0.585  -- -- --  -- -- -- 
 (1.145) (1.247) (1.278)         
Observations 31,959 15,318 16,641  31,959 15,318 16,641  31,959 15,318 16,641 
Overall R2 0.453 0.453 0.453  0.446 0.446 0.446  0.452 0.452 0.452 
Dependent 
variable D: 90-day mean  E: 1-year mean  F: 2-year mean 

verbal scores all male female  all male female  all male female 
 (1) (2) (3)  (4) (5) (6)  (7) (8) (9) 
0-50 (reference)            
            
51–75 -1.352** -1.878** -0.828  -1.694* -2.695** -0.750  -0.931 -1.851* 0.032 
 (0.656) (0.737) (0.661)  (1.000) (1.220) (0.789)  (0.993) (1.102) (0.920) 
76–100 -1.821** -2.309** -1.329*  -2.025* -3.100** -0.996  -1.584 -2.478** -0.615 
 (0.789) (0.897) (0.780)  (1.076) (1.324) (0.846)  (1.048) (1.181) (0.969) 
101–200 -2.197** -2.806*** -1.625*  -2.934** -4.281*** -1.667*  -3.033*** -4.186*** -1.840* 
 (0.933) (1.062) (0.911)  (1.183) (1.485) (0.930)  (1.123) (1.259) (1.059) 
Observations 31,959 15,318 16,641  31,959 15,318 16,641  31,959 15,318 16,641 
Overall R2 0.446 0.446 0.446  0.447 0.447 0.447  0.431 0.431 0.431 

Source:  Authors. 
Note:  See the notes to Table 4.1. 
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Table A.7 Contemporaneous and cumulative exposure 
A. Verbal test scores 

Dependent variable Contemporaneous  Cumulative 
verbal scores 1-day  7-day  30-day  90-day  1-year  2-year  3-year 
 (1)  (2)  (3)  (4)  (5)  (6)  (7) 

tAPI
 

-0.004*  -0.001  -0.000  -0.002  -0.002  -0.003  -0.003 

 (0.002)  (0.002)  (0.002)  (0.002)  (0.002)  (0.002)  (0.002) 

1

0

1 k
t ii

API
k

−

−=∑    -0.013**  -0.035***  -0.043***  -0.042***  -0.055***  -0.083*** 

   (0.005)  (0.008)  (0.011)  (0.012)  (0.015)  (0.020) 
              
Observations 31,959  31,959  31,959  31,959  31,959  31,959  31,959 
Overall R2 0.284  0.284  0.284  0.284  0.284  0.284  0.284 

B. Math test scores 
Dependent variable Contemporaneous  Cumulative 
math scores

 
1-day  7-day  30-day  90-day  1-year  2-year  3-year 

 (1)  (2)  (3)  (4)  (5)  (6)  (7) 

tAPI  -0.004*  -0.001  -0.000  -0.002  -0.002  -0.003  -0.003 
 (0.002)  (0.002)  (0.002)  (0.002)  (0.002)  (0.002)  (0.002) 

1

0

1 k
t ii

API
k

−

−=∑    -0.003  -0.004*  -0.007**  -0.006*  -0.009*  -0.015** 

   (0.002)  (0.002)  (0.003)  (0.003)  (0.004)  (0.006) 
              
Observations 31,959  31,959  31,959  31,959  31,959  31,959  31,959 
Overall R2 0.680  0.680  0.680  0.680  0.680  0.680  0.680 

Source:  Authors. 

Note: 1

0

1 k
t ii

API
k

−

−=∑ indicates the mean of API readings in the past k days, where k equals 1, 7, 30, 90, 365, 730, and 1,095, respectively. All the regressions include individual 

fixed effects; county fixed effects; year, month, day of week, and post meridiem hour fixed effects; and a quadratic monthly time trend. Demographic controls include gender, age 
and its square and cubic terms, household per capita income, years of education, and an indicator for migration. Weather controls include 20°F indicators for temperature bins (that 
is, <25°F, 25–45°F, 45–65°F, 65–85°F, and >85°F), total precipitation, mean wind speed, and a dummy for bad weather. County-level characteristics include gross domestic 
product (GDP) per capita, population density, and industrial value share. Robust standard errors, clustered at the county level, are presented in parentheses. API = air pollution 
index; SD = standard deviation. *10% significance level; **5% significance level; ***1% significance level. 
 



30 

APPENDIX B:  SCIENTIFIC BACKGROUND AND POTENTIAL MECHANISMS 

Broadly speaking, according to the existing medical literature, air pollution may affect cognition through 
physiological and psychological pathways. 

A few of these physiological pathways have been documented in the literature (Block and 
Calderón-Garcidueñas 2009). First, multiple pollutants (or toxic compounds bonded to the pollutants) 
may directly affect brain chemistry. For example, ozone in the air can react with body molecules to create 
toxins, causing asthma and respiratory problems (Sanders 2012).19 Particulate matter (PM), especially 
fine particles, can carry toxins through small passageways and directly enter into the brain. There is 
evidence that suggests that exposure to high PM concentrations may compromise cognitive performance 
even for people working indoors (Braniš, Řezáčová, and Domasová 2005).20 

Second, people breathing polluted air are more likely to be subject to oxygen deficiency, which in 
turn impairs their cognitive abilities (Amitai et al. 1998; Kampa and Castanas 2007). Carbon monoxide 
(CO), one important element of air pollution, prevents the body from releasing adequate oxygen to vital 
organs, in particular to the brain, which consume a large fraction of total oxygen intake. Third, air 
pollution could also damage the immune system, hinder neurological development, and impair neuron 
behavior, all of which contribute to long-term memory formation (Perera et al. 2009). Fourth, long-term 
exposure to pollution leads to the growth of white-matter lesions, potentially inhibiting cognition 
(Calderón-Garcidueñas et al. 2008). Further, exposure to highly concentration air pollution can be linked 
to markers of neuroinflammation and neuropathology that are associated with neurodegenerative 
conditions, such as Alzheimer’s disease (Calderón-Garcidueñas et al. 2004; Levesque et al. 2011). 

In addition to physiological pathways, air pollution could also disrupt cognitive functioning 
through some psychological pathways. For example, high concentrations of CO and nitrogen dioxide 
(NO2) are significantly associated with headache, eye irritation, and respiratory problems (Nattero and 
Enrico 1996).21 High levels of ozone and sulfur dioxide (SO2) have also been found to cause psychiatric 
distress (Rotton and Frey 1984).22 Exposure to high concentrations of CO, NO2, SO2, ozone, and PM may 
also increase the risk of depression (Szyszkowicz 2007). 

Our central nervous system has two important tissues: gray matter and white matter. Gray matter 
represents information processing centers, and white matter represents the networking of – or connections 
between – these processing centers. Mathematics abilities, which require more local processing, mainly 
depend on gray matter. While language skills, which require integrating and assimilating information 
from distributed gray-matter regions in the brain, mainly rely on white matter.23 

A brain scanning study conducted by Haier et al. (2005) reveals that men have approximately 6.5 
times the amount of gray matter activated during general intelligence tests than women do, but women 
have nearly 10 times the amount of white matter activated during general intelligence tests than men do. 
This finding may help explain why men tend to excel in math tests, while women tend to excel in verbal 
tests. 

                                                      
19 Ozone is formed through a chemical reaction between nitrogen oxides, sunlight, and various gaseous pollutants. 
20 PM is generated by power plants, factories, vehicles, dust, pollen and forest fires. 
21 NO2 and CO are emitted by coal-burning power plants and the burning of fossil fuels. 
22 SO2 is mainly emitted by coal-burning power plants. 
23 University of California, Irvine. "Intelligence in Men and Women Is a Gray and White Matter." Science Daily. 

www.sciencedaily.com/releases/2005/01/050121100142.htm [accessed January 25, 2017]. 
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Figure B.1 Front view of grey and white matter activation during IQ tests 

 
Source: Haier et al. (2005). 

A large body of literature has proven that air pollution can reduce the density of white matter in 
the brain (Calderón-Garcidueñas et al. 2008, 2011; Wilker et al. 2015), which may directly explain why 
air pollution appears to have a larger effect on verbal test than on math test scores. Besides, since men 
have a much smaller amount of white matter activated during intelligence tests, their cognitive 
performance, especially in the verbal domain, tends to be more affected by exposure to air pollution. 
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